Building Materials and Structures 67 (2024) 2400012K

Gradevinski materijali i konstrukcije
Building Materials and Structures

journal homepage: www.dimk.rs

https://doi.org/10.5937/GRMK2400012K

Review paper

DIMK

Application of machine learning in asphalt and concrete material testing: a

comprehensive review

Meisam Khorshidi"”{:} Eshan Dave”(: Jo Sias”

7 Department of Civil and Environmental Engineering, University of New Hampshire, 33 Academic Way, Durham, NH 03824, USA

Article history

Received: 21 October 2024
Received in revised form:

27 November 2024

Accepted: 30 November 2024
Available online: 20 December 2024

Keywords

predictive modeling,

material performance prediction,
pavement distress classification,
unsupervised learning,

ensemble methods,

hybrid models,

artificial neural networks (ANN),
gaussian process regression (GPR)

ABSTRACT

This literature review explores the application of machine learning (ML) techniques
in civil engineering material testing, with a focus on asphalt mixtures, concrete
properties, and pavement system classification. The review provides a
comprehensive comparison of various ML models, including Artificial Neural
Networks (ANNSs), Support Vector Machines (SVMs), Random Forest (RF),
Gradient Boosting (GB), and Gaussian Process Regression (GPR), assessing their
strengths and limitations in predicting material performance. Key findings indicate
that ensemble methods, such as Gradient Boosting and XGBoost, consistently
outperformed other models in terms of prediction accuracy and handling nonlinear
relationships, although they require significant computational power. In contrast,
simpler models like SVM and ANN demonstrated strong predictive capabilities with
smaller datasets but were prone to overfitting and computational challenges.
Additionally, unsupervised learning methods, such as K-means clustering and
Principal Component Analysis (PCA), proved effective in classifying pavement
conditions and detecting anomalies, with K-means offering simplicity and efficiency
at the cost of sensitivity to initialization and cluster definitions. The review concludes
by emphasizing the potential of hybrid and ensemble models to improve prediction
accuracy and reduce computational costs, highlighting the need for further research
to address data availability, model interpretability, and practical implementation

challenges in real-world applications.

1 Introduction

Civil engineering has long relied on empirical methods
and extensive experimental testing to evaluate the
performance of materials, structures, and infrastructure
systems. However, the increasing complexity of modern
construction projects and the growing need for more
accurate predictions of material behavior under varying
conditions have led to a shift towards more data-driven
approaches. In this context, machine learning (ML) has
emerged as a powerful tool for advancing civil engineering,
particularly in the field of material testing and performance
prediction [1], [2].

Machine learning enables civil engineers to analyze vast
amounts of experimental data, detect patterns, and build
predictive models that can forecast material behavior under
different loading conditions, environmental factors, and time
frames. With the ability to model nonlinear relationships and
optimize multiple variables simultaneously, ML offers
significant advantages over traditional statistical and
empirical models [3], [4]. It can enhance decision-making
processes in areas such as material design, optimization,
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and failure prediction, thereby reducing costs, increasing
efficiency, and improving overall performance [2], [5].

1.1 Machine learning in material testing

In civil engineering, material testing is critical for
determining the properties of construction materials such as
asphalt, concrete, and fiber-reinforced composites. These
materials exhibit complex behaviors when subjected to
stress, temperature changes, and aging. Machine learning
models can simulate these behaviors and offer insights that
would otherwise require costly and time-consuming physical
tests [6]-[8].

For example, ML algorithms are used to predict key
material properties such as compressive strength, modulus
of elasticity, tensile strength, rut depth, fracture energy, and
more. Techniques such as Artificial Neural Networks (ANNs),
Support Vector Machines (SVMs), Random Forests (RF),
and Gradient Boosting (GB) have demonstrated strong
predictive capabilities in areas like asphalt mixture
performance and concrete strength estimation. These
models not only improve the accuracy of predictions but also
allow for the integration of a wide range of input parameters,
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such as material composition, environmental conditions, and
load types [6], [9]-[11].

1.2 Advantages and challenges

The application of machine learning in material testing
offers several advantages. First, it reduces the reliance on
extensive experimental testing by providing accurate
predictions based on historical data. This is especially
beneficial in large-scale infrastructure projects with limited
time and resources [12]-{14]. Second, ML models are highly
flexible, and able to account for nonlinear interactions
between multiple variables, thus offering deeper insights into
how different factors influence material behavior [15], [16].
Finally, these models can be continually improved as more
data becomes available, leading to more refined predictions
over time [17]-[19].

However, the adoption of machine learning in civil
engineering also presents challenges. One of the primary
concerns is the availability and quality of data. ML models
require large datasets to function effectively, and
inconsistencies in data collection can lead to inaccurate
predictions [20], [21]. Moreover, the "black box" nature of
some machine learning algorithms, particularly deep
learning models, may hinder the interpretability of results,
making it difficult for engineers to trust the outcomes without
a clear understanding of how predictions were generated
[22].

1.3 Current trends in research

Recent research in civil engineering has explored the use
of machine learning models to solve complex material testing
problems, including asphalt mixture performance and
optimization, concrete property prediction and structural
performance, and classification and pattern recognition in
pavement systems. Many studies have demonstrated the
effectiveness of machine learning in improving accuracy,
reducing experimental costs, and providing actionable

insights for material design and testing. For example,
Artificial Neural Networks (ANNs) have been widely used to
predict the compressive strength of concrete, while Support
Vector Machines (SVMs) have shown strong performance in
predicting fracture energy and elastic modulus in various
materials [9], [10], [15]. Figure 1 illustrates key machine
learning methods in civil engineering material testing,
organized by learning type (supervised, unsupervised,
ensemble, hybrid) and their applications in asphalt, concrete,
and pavement analysis.

1.4 Scope of this review

This literature review aims to provide a comprehensive
overview of the applications of machine learning in material
testing within civil engineering, focusing on the following
three key areas:

e Asphalt Mixture Performance and Optimization:
Includes studies predicting the properties of asphalt
mixtures, such as dynamic modulus, rut depth, and binder
content, as well as optimizing asphalt mix designs.

e Concrete  Property Prediction and  Structural
Performance: Covers the prediction of concrete properties
like compressive strength, elasticity, and shear strength, as
well as the performance of fiber-reinforced concrete.

o Classification and Pattern Recognition in Pavement
Systems: Discusses studies that use machine learning to
classify pavement distress, predict cracking patterns, and
identify structural issues within pavement systems.

The review will discuss the different machine learning
models used in literature, the key performance metrics they
predict, and the pros and cons of each approach. Special
emphasis will be placed on comparing multiple models
applied simultaneously in material testing, as researchers
increasingly use ensemble methods and comparative
analysis to identify the best-performing models for specific
engineering problems.
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Figure 1. Machine learning methods in civil engineering material testing
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2 Asphalt mixture performance and optimization

Machine learning has played a transformative role in the
prediction and optimization of asphalt mixture performance,
with various models being applied to forecast essential
performance metrics such as dynamic modulus, rut depth,
and Marshall stability.

Fan et al. (2024) utilized a Back-Propagation Neural
Network (BPNN) and Support Vector Machine (SVM) to
predict the strength of asphalt mixtures across diverse
service conditions. They considered inputs such as stress
states (direct tensile, uniaxial compression, indirect tensile,
and four-point bending), temperature ranges from -25°C to
35°C, and loading rates between 0.02 MPa/s and 0.5 MPal/s.
While SVM achieved slightly better accuracy (R? of 0.9983)
than BPNN (R? of 0.9979), BPNN performed better in terms
of minimizing small errors (Mean Absolute Percentage
Deviation: 0.067 vs. 0.145). This demonstrated that although
SVM excels in accuracy, BPNN could offer more consistent
performance in specific scenarios by reducing smaller errors
[2].

Upadhya et al. (2022) applied ANN, SVM, Gaussian
Processes (GP), and Random Forest (RF) to predict the
Marshall stability of glass fiber-reinforced asphalt mixes. The
input variables included bitumen content, glass fiber content,
fiber length, and bitumen grade, while the output variable
was Marshall stability. The study showed that SVM with a
Pearson Universal Kernel (PUK) achieved the best results
(CC = 0.8776 and RMSE = 1.9653), making it the most
accurate model for this application. ANN demonstrated
reliable performance but showed higher errors during the
testing phase, while GP and RF performed competitively but
were outperformed by SVM. The results emphasized SVM's
strength in managing nonlinear relationships, though its
effectiveness depended heavily on kernel tuning, which
posed a challenge in some applications [6].

In the study by Rondinella et al. (2023), SVM and
Categorical Boosting (CatBoost) were applied to predict the
mechanical and volumetric properties of road pavement
asphalt mixtures incorporating recycled materials such as
construction and demolition waste (C&DW) and reclaimed
asphalt pavement (RAP). The input variables included
gyratory revolutions, RAP content, water content, and
bitumen properties, with the output variables being indirect
tensile strength (ITS) and saturated surface dry voids
(SSDV). CatBoost demonstrated superior accuracy (R? =
0.9916 for ITS) compared to SVM (R? = 0.8828), particularly
excelling in handling categorical data, which made it more
efficient for complex material datasets [4].

The study by Khorshidi et al. (2023) investigated the
effects of different proportions of alternative materials,
including Reclaimed Asphalt Pavement (RAP), crumb rubber
(CR), steel slag (SS), and waste engine oil (WEO), on the
performance of asphalt mixtures. Using 44 mixtures with
varying RAP (0-75%), WEO (0-15%), CR (0-15%), and SS
(0% or 20%) contents, the study evaluated cracking
resistance, rutting resistance, and moisture damage.
Machine learning models, including feed-forward neural
networks (FNN), generalized linear models (GLM), support
vector regression (SVR), and Gaussian process regression
(GPR), were applied to predict the optimal content
combinations. GPR performed the best, accurately
identifying the most suitable material ratios for different high-
traffic conditions. While GPR effectively modeled complex
relationships, its computational demands and tuning
requirements were noted as challenges. The study
concluded that GPR provided reliable predictions for
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optimizing the balance between cracking resistance, rutting
resistance, and moisture damage in asphalt mixtures with
recycled materials [23].

Another study conducted by Khorshidi et al. (2023)
assessed the effects of RAP, CR, SS, and WEO on the
cracking resistance of asphalt mixtures. Using performance
indices from the lllinois Flexibility Index Test (I-FIT), a deep
neural network (DNN) model was applied to predict mixture
performance and was compared with linear and polynomial
regression models. The DNN outperformed the other
models, achieving a coefficient of determination (R?) of 0.84,
compared to 0.60 for linear and 0.66 for polynomial
regression. DNN’s advantages included its ability to capture
complex nonlinear relationships, providing more accurate
predictions. However, it required more data and
computational resources. Overall, DNN proved to be a
reliable model for predicting cracking resistance in asphalt
mixtures with recycled materials [5].

Liu et al. (2023) applied multiple models, including SVR,
KRR, ANN, Gradient Boosting (GB), and XGBoost, to predict
the dynamic modulus (|[E*|) of asphalt mixtures. The input
variables consisted of temperature, loading frequency,
binder properties (such as viscosity and phase angle), and
aggregate gradation. XGBoost delivered the highest
accuracy (R? =0.9867, RMSE = 2.7422) due to its ability to
handle nonlinear interactions and prevent overfitting through
regularization techniques. However, it required considerable
computational resources, which posed a limitation for its
scalability in large-scale applications. Other models like
ANN, while effective, were prone to overfitting and required
substantial hyperparameter tuning, which made them less
practical for routine use [1].

Liu et al. (2022) further explored the prediction of rut
depth using SVR, RF, ANN, and GB models. The input
variables included traffic data (e.g., Equivalent Single Axle
Loads, ESALs), climate conditions, pavement material
properties (e.g., binder content, air voids), and structural
attributes (layer thicknesses). GB was identified as the best-
performing model, achieving an R? of 0.9236, showcasing its
effectiveness in capturing nonlinear interactions within the
dataset. While ANN also performed well (R* = 0.9021), it
required more computational power and tuning. RF lagged in
performance with lower accuracy, while SVR showed
significant variance in predictions due to its sensitivity to
parameter selection [24].

In a separate study, Liu et al. (2022) used machine
learning models to predict effective asphalt content (Pbe)
and absorbed asphalt content (Pba) in asphalt mixtures.
Gradient Boosting was the top performer, with R? values of
0.9479 and 0.9459 for Pbe and Pba, respectively, excelling
in managing nonlinear relationships. RF performed
adequately but was less accurate compared to Gradient
Boosting. SVR showed moderate accuracy but was more
prone to performance drops when handling larger datasets
[25].

Liu et al. (2022) also explored the prediction of the
International Roughness Index (IRI) of asphalt pavements
using Support Vector Regression (SVR), Random Forest
(RF), Artificial Neural Networks (ANN), Gaussian Process
Regression (GPR), Extra-Trees, and Gradient Boosting
(GB), combined with dimensionality reduction techniques
like Autoencoders (AE), Principal Component Analysis
(PCA), and Recursive Feature Elimination (RFE). The input
variables included temperature, Equivalent Single Axle
Loads (ESALs), layer thickness, binder content, air voids,
and aggregate gradation, while the output variable was IRI.
The AE-GPR model demonstrated the highest accuracy
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(R? = 0.939), outperforming other models by efficiently
managing high-dimensional data. Autoencoders significantly
improved model performance by reducing input noise and
computational load. In contrast, models like SVR and RF
showed lower performance due to overfitting and sensitivity
to hyperparameter tuning, while ANN performed well but was
computationally expensive [26].

Majidifard et al. (2020) employed Gene Expression
Programming (GEP) to predict rut depth in asphalt mixtures
subjected to the Hamburg Wheel-Tracking Test (HWTT).
The model inputs included asphalt binder properties,
aggregate size, and reclaimed asphalt content, while the
output was rut depth. GEP outperformed ANN by providing
explicit mathematical expressions, making the model more
interpretable and offering engineers insights into the factors
driving rutting behavior. However, GEP required careful
tuning of parameters like chromosome length, limiting its
practicality for complex datasets [27].

Rahman et al. (2021) explored various ensemble
methods, including Extra-Trees, GB, and SVR, to predict rut
depth and indirect tensile (IDT) strength in asphalt mixtures.
Extra-Trees demonstrated the highest prediction accuracy
(R? =0.922 for rut depth), but it was sensitive to imbalanced
data, which affected its generalization. GB and SVR provided
more robust predictions across diverse datasets but required
more extensive computational resources to minimize bias
and ensure balanced predictions [9].

Tiwari et al. (2022) applied ANN with various activation
functions (Exponential Linear Unit, ELU, and Hyperbolic
Tangent, TanH) to predict the mechanical properties of
asphalt mixes with industrial waste fillers. The input variables
included air void content, filler type, and filler content, while
the output variables included Marshall stability and indirect
tensile strength. The TanH activation function performed
better, achieving R? = 0.9967, though it required higher
computational power due to increased complexity in
capturing nonlinear relationships [28].

In another study, Tiwari et al. (2023) applied ANN with
different activation functions, including TanH and ELU, to
predict mechanical properties of asphalt mixtures with silica
fume fillers. The TanH-SNN model achieved the highest
accuracy (R? =0.9988), outperforming other models in terms
of capturing nonlinear relationships between inputs and
outputs, though the increased complexity required more
computational power [29].

Ali et al. (2021) used XGBoost to predict dynamic
modulus in asphalt mixtures, outperforming traditional
models such as the Witczak and Hirsch models (R? = 0.961).
XGBoost's strength lay in its ability to handle complex
nonlinear relationships and avoid overfitting, though its
computational demands limited its practicality in smaller-
scale applications. ANN models, while competitive, lacked
interpretability and required more extensive resources to
train [30].

Mirzaiyanrajeh et al. (2022) used ANN, Self-Validated
Ensemble Modeling (SVEM), and Augmented Full Quadratic
Model (AFQM) to predict low-temperature fracture energy of
asphalt mixtures. ANN provided the highest accuracy but
was computationally expensive, whereas SVEM, although
slightly less accurate, was more efficient with small datasets,
striking a balance between accuracy and computational
efficiency [31].

Liu et al. (2023) utilized recurrent neural networks (RNN),
long short-term memory (LSTM), and gated recurrent units
(GRU) for time series modeling to predict rutting depth. Input
variables included historical rutting depth, temperature, and
pavement properties. GRU outperformed both RNN and

LSTM, achieving an R? value of 0.90. GRU's ability to retain
long-term memory with fewer parameters made it more
computationally efficient, though LSTM still performed well in
capturing seasonal trends in the data [32].

Finally, Al-Sabaeei et al. (2023) employed XGBoost and
Random Forest Regression (RFR) to predict mixing and
compaction temperatures for bio-modified asphalt using
crude palm oil (CPO) and tire pyrolysis oil (TPO) as
modifiers. XGBoost outperformed RFR in predicting shear
viscosity, but RFR demonstrated better accuracy for
temperature predictions, with R? values of 0.96583 for mixing
temperature and 0.96281 for compaction temperature. Both
models excelled in accuracy but were limited by their high
computational requirements [33].

2.1 Summary of methods

Table 1 provides a detailed summary of studies focusing
on machine learning approaches and their applications in
asphalt mixture performance prediction. Across the studies
reviewed, several machine learning methods were employed
to predict key asphalt mixture performance metrics, including
dynamic modulus, rut depth, Marshall stability, International
Roughness Index (IRI), and crack resistance. Each method
presented unique strengths and weaknesses, as highlighted
below:

o Artificial Neural Networks (ANNSs): Frequently used for
predicting complex performance  metrics, ANNs
demonstrated strong accuracy in predicting properties such
as Marshall stability, dynamic modulus, and fracture energy.
ANNs excel in capturing intricate nonlinear relationships
between variables, especially when paired with activation
functions like TanH and ReLU. However, their major
drawbacks include computational expense, the need for
large datasets, and a propensity for overfitting without careful
tuning of hyperparameters. In studies by Upadhya et al.
(2022) Tiwari et al. (2022), and Khorshidi et al. (2023), ANNs
and DNNs performed well but required significant
computational resources and hyperparameter optimization
(5], [6], [28].

e Support Vector Machines (SVMs): SVM models,
particularly when paired with kernel methods like the
Pearson Universal Kernel (PUK), were highly accurate in
predicting metrics such as strength and Marshall stability.
SVMs excel in handling nonlinear relationships and are
particularly effective with small- to medium-sized datasets.
However, as seen in studies like Fan et al. (2024) and
Upadhya et al. (2022), SVMs require careful kernel tuning
and can struggle with large datasets due to high
computational costs and sensitivity to hyperparameters [2],
[6].

o Gradient Boosting (GB) and XGBoost: These ensemble
learning methods consistently outperformed other models in
predicting dynamic modulus, rut depth, and other asphalt
mixture properties. XGBoost, in particular, has proven to be
highly effective at managing nonlinear interactions,
regularizing models to avoid overfitting, and delivering
superior prediction accuracy. This method was widely used
in studies such as Liu et al. (2023) and Ali et al. (2021), where
XGBoost delivered top results in predicting dynamic modulus
and shear viscosity [1], [30]. However, XGBoost requires
significant computational power and tuning, which can limit
its practicality in certain applications.

e Gaussian Process Regression (GPR): GPR excels at
modeling complex nonlinear relationships and provides both
predictions and uncertainty estimates. It is particularly
effective for small to medium datasets but can be

Building Materials and Structures 67 (2024) 2400012K



Application of machine learning in asphalt and concrete material testing: a comprehensive review

computationally demanding and requires careful tuning of
hyperparameters. In studies by Khorshidi et al. (2023), GPR
outperformed other models in predicting the optimal
combinations of alternative materials in asphalt mixtures,
accurately balancing cracking resistance, rutting resistance,
and moisture damage, though its high computational
requirements were noted [23].

¢ Random Forest (RF): While RF models provided solid
predictions, particularly in larger datasets, they generally
lagged behind ensemble methods like Gradient Boosting in
terms of accuracy. Studies such as Liu et al. (2022) and
Rahman et al. (2021) showed that RF models, though
effective in certain scenarios, were prone to higher error
rates when handling complex datasets and large feature
spaces [9], [26]. RF's strength lies in its ability to handle
overfitting better than simpler models, but it can
underperform when compared to more advanced techniques
like XGBoost.

e Gene Expression Programming (GEP): GEP, as
applied by Majidifard et al. (2020), provided interpretable
models that elucidate the relationships between input
variables and performance metrics, such as rut depth. This
transparency made GEP attractive for engineers who require

interpretable results [27]. However, GEP required precise
parameter tuning, making it less effective for highly complex
datasets or situations where rapid model development was
needed.

e Autoencoders (AE) and Dimensionality Reduction
Techniques: In Liu et al. (2022), the combination of
Autoencoders (AE) with Gaussian Process Regression
(GPR) showed how dimensionality reduction can improve
machine learning models by reducing input noise and
computational complexity. AE-GPR outperformed models
like SVR and RF by effectively managing high-dimensional
data in predicting IRI, proving that reducing input space can
lead to improved accuracy and efficiency [26].

¢ Self-Validated Ensemble Modeling (SVEM): While less
commonly used, SVEM provided a balanced approach
between accuracy and computational efficiency, especially
for smaller datasets. In Mirzaiyanrajeh et al. (2023), SVEM
was found to be more practical than ANN in predicting
fracture energy for smaller datasets, offering reliable results
with fewer computational resources [31]. However, its
predictive capacity could be slightly lower than ANN in more
complex scenarios.

Table 1. Summary of machine learning applications in predicting asphalt mixture performance: overview of data collection
methods, model types, and justifications for model selection across studies
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2.2 Overall trends

The studies reviewed consistently demonstrated that
ensemble methods such as Gradient Boosting and XGBoost
were the most effective in terms of both accuracy and
robustness. These models were particularly useful in
handling large datasets and complex, nonlinear relationships
within asphalt mixture data. However, their high
computational costs and complexity in hyperparameter
tuning limited their practicality in some real-world scenarios.
On the other hand, simpler models like SVM and ANN, while
still effective in certain cases, struggled with overfitting and
computational demands when faced with large, high-
dimensional datasets. GPR also proved highly effective,
particularly for small to medium datasets, though it required
substantial computational resources and careful tuning.
Dimensionality reduction techniques such as Autoencoders
(AE) and Principal Component Analysis (PCA) helped
mitigate these issues by streamlining input features,
improving the efficiency and accuracy of models like GPR
and SVR.

Finally, interpretability remains a key consideration, with
methods like Gene Expression Programming (GEP) offering
more transparent models than black-box approaches like
ANN and XGBoost. This interpretability can be critical for
engineers looking to understand the underlying relationships
between variables and performance outcomes.

3 Concrete property prediction and structural
performance

Machine learning (ML) models have become an essential
tool in predicting concrete properties and optimizing
structural performance, addressing the limitations of
traditional empirical methods. This section explores various
machine learning techniques applied to predict key concrete
properties such as compressive strength, tensile strength,
modulus of elasticity, and fracture energy. These studies
demonstrate the advantages and disadvantages of different
ML approaches in terms of prediction accuracy,
computational complexity, and model interpretability.

Song et al. (2022) applied machine learning models such
as Atrtificial Neural Networks (ANN), Support Vector
Machines (SVM), Decision Trees (DT), Random Forest (RF),
and Gradient Boosted Regression Trees (GBRT) to optimize
cementitious material mixtures. Input variables included
water content, cement content, supplementary cementitious
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materials (SCMs), and aggregate content, while the outputs
were uniaxial compressive strength (UCS) and durability.
ANN excelled in capturing nonlinear relationships but
required significant computational resources and careful
tuning to avoid local minima. SVM performed well in
generalization but was highly sensitive to hyperparameter
tuning, and RF improved accuracy by reducing variance,
though it came with higher computational costs. GBRT
offered the highest accuracy in UCS prediction but increased
computational complexity. Metaheuristic algorithms such as
Particle Swarm Optimization (PSO) and Genetic Algorithms
(GA) were used to optimize the model parameters and
enhance the performance of the ML models [34].

Hafez et al. (2022) developed a machine learning
regression model, Pre-bcc, to predict slump, compressive
strength, carbonation, and chloride ingress resistance for
blended cement concrete (BCC) using supplementary
cementitious materials (SCMs) such as fly ash, ground
granulated blast-furnace slag, silica fume, lime powder, and
calcined clay. Input variables included SCM types and
proportions. ANN, RF, and SVM models were tested, with
RF showing better accuracy and interpretability, though
computationally intense. SVM required careful tuning but
handled generalization well. Pre-bcc offers high prediction
accuracy for slump and strength but is computationally
complex when handling multiple SCMs, improving the
understanding of SCM effects in BCC [16].

Hafez et al. (2023) then introduced Opt-bcc, an
optimization tool using Genetic Algorithms (GA) with Pre-bcc
to optimize sustainability scores of blended cement concrete
mixes. Input variables included various SCM types and
proportions, while output variables were strength, slump, and
durability indices. GA effectively minimized environmental
and cost impacts but required complex tuning. Opt-bcc
achieved significant cost and environmental reductions
compared to existing models, though functional parameter
prediction models were nonlinear, demanding higher
computational resources. This study highlighted GA’s
potential in eco-friendly concrete optimization while
balancing functional and economic criteria [35].

Pfeiffer et al. (2024) utilized an amortized Gaussian
Process (GP) model integrated with an inverse optimization
framework to design concrete mixes minimizing climate
impact and cost. Input variables were SCM proportions,
water/cementitious  material ratio, and aggregate
composition, while the output variable was compressive
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strength at 28 days. The GP model provided mean
predictions and uncertainty estimates, making it more robust
than traditional models like ANN and RF, which lack
uncertainty measures. The GP's flexibility for industrial-scale
datasets added accuracy, but computational demands were
significant. This study demonstrated GP's effectiveness for
mix design, balancing environmental and economic
objectives with structural performance requirements [36].
Moein et al. (2023) reviewed several machine learning and
deep learning models for predicting concrete properties,
including SVM, ANN, Random Forest, and Extreme Learning
Machines (ELM). The input variables included cement
content, aggregate composition, water-cement ratio, and
curing age. ANN showed high accuracy but was prone to
overfitting without proper tuning, while SVM was more
effective for smaller datasets but struggled with high-
dimensional data. ELM provided faster training times
compared to ANN but at the cost of prediction accuracy.
Genetic Algorithms (GA) were used to enhance model
optimization when combined with other ML models. Random
Forest and ANN were identified as the most reliable models
for concrete property prediction, with RF offering better
interpretability and ANN excelling in predictive performance
[11].

Yu et al. (2018) compared an Enhanced Cat Swarm
Optimization (ECSO)-optimized SVM model with traditional
models like ANN and Extreme Learning Machines (ELM) for
predicting the compressive strength of high-performance
concrete (HPC). Input variables included water content,
cement content, and supplementary materials. The ECSO-
optimized SVM model achieved superior accuracy (R? =
0.9526), outperforming ANN (R? = 0.8716). While SVM
required significant parameter tuning, ECSO improved the
convergence rate and avoided local minima, making it more
efficient. ANN, though effective, suffered from overfitting and
was computationally expensive [37].

Pham et al. (2016) used a Least Squares Support Vector
Regression (LS-SVR) model optimized by the Firefly
Algorithm (FA) to predict the compressive strength of high-
performance concrete (HPC). Input variables included
cement, aggregates, and curing conditions. FA-LS-SVR
achieved the highest accuracy (R? = 0.89) compared to ANN
and traditional SVM models. The optimized SVM model
outperformed ANN by providing better generalization and
reducing prediction errors. However, the model required
careful tuning of parameters like penalty factors, making it
computationally demanding [38].

Yaseen et al. (2018) used Extreme Learning Machines
(ELM) to predict the compressive strength of lightweight
foamed concrete, outperforming other models like
Multivariate Adaptive Regression Splines (MARS) and M5
Tree. Input variables included cement content, oven dry
density, and foam volume. ELM achieved an R? of 0.875,
making it the fastest model in terms of training speed, though
it was less accurate for highly complex data. MARS and M5
Tree provided reasonable accuracy but failed to capture
complex relationships, while ELM's fast training and
simplicity made it an efficient option for lightweight concrete
strength prediction [39].

Omran et al. (2016) compared Gaussian Process
Regression (GPR), Multilayer Perceptron (MLP), and
Support Vector Machines (SVM) for predicting the
compressive strength of environmentally friendly concrete.
GPR outperformed the other models, achieving the highest
accuracy (R? = 0.9842) and offering better generalization
through its probabilistic approach. However, GPR was
computationally intensive. Ensemble methods like Additive

Regression and Bagging with GPR also provided high
accuracy, while SVM and MLP required extensive parameter
tuning to avoid overfitting. GPR was highlighted for its
balance between accuracy and computational efficiency,
making it a strong choice for concrete strength prediction
[40].

Bonifacio et al. (2019) applied Support Vector
Regression (SVR) and the Finite Element Method (FEM) to
predict the compressive strength and Young's modulus of
lightweight aggregate concrete (LWAC). SVR outperformed
FEM slightly, achieving a lower deviation from experimental
results (5.46% for compressive strength), with the key
advantage being SVR's reusability with new data and speed.
FEM, although slightly less accurate, required fewer inputs
and was advantageous in cases where experimental results
were scarce. SVR required a larger training dataset, making
it more computationally intensive [10].

Tanyildizi (2018) applied ANN and SVM to predict the
strength properties of carbon fiber-reinforced lightweight
concrete exposed to high temperatures. Input variables
included silica fume, carbon fiber content, and temperature.
ANN achieved the highest accuracy (R* = 0.9902 for
compressive strength), outperforming SVM (R? = 0.9701).
While ANN offered superior predictive accuracy, it required
more computational resources and careful optimization of
hidden neurons and learning algorithms. SVM was simpler
to use but less accurate, making it a better choice for smaller
datasets [15].

Mozumder et al. (2017) used Support Vector Regression
(SVR) to predict the uniaxial compressive strength of fiber-
reinforced polymer (FRP) confined concrete, achieving
higher accuracy (R? = 0.9832 for CFRP) than ANN models
and empirical methods. SVR's ability to avoid local minima
and provide better generalization made it a more reliable
method, though it required substantial computational effort
and parameter tuning compared to ANN, which suffered from
slower convergence and higher prediction errors [8].

Keshtegar et al. (2019) applied a hybrid RSM-SVR model
to predict the shear strength of steel fiber-reinforced concrete
beams (SFRCBs). The hybrid model outperformed ANN and
other traditional methods, achieving an R? of 0.9508, thanks
to its ability to capture nonlinear relationships and cross-
correlations between input variables. Although the hybrid
model required significant computational power, it proved to
be the most accurate for predicting SFRCBs shear strength,
demonstrating the advantage of combining multiple
modeling approaches [7].

Aiyer et al. (2014) compared Least Square Support
Vector Machines (LSSVM) and Relevance Vector Machines
(RVM) for predicting the compressive strength of self-
compacting concrete. RVM outperformed LSSVM and ANN,
offering additional benefits such as handling variance and
uncertainty. While LSSVM was accurate, RVM's ability to
calculate variance made it a better tool for assessing
uncertainty in predictions, especially in civil engineering
applications [41].

Yuvaraj et al. (2013) applied SVR to predict fracture
characteristics, such as fracture energy and failure load, of
high-strength and ultra-high-strength concrete beams. The
SVR model achieved high prediction accuracy (R? close to 1
for all parameters), outperforming traditional empirical
models. The SVR model's strength lay in its ability to handle
nonlinear relationships even with limited datasets, though it
required careful parameter tuning to optimize its predictive
performance [42].

Yan & Shi (2010) used SVM to predict the elastic
modulus of normal and high-strength  concrete,
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outperforming traditional empirical models. SVM achieved
better accuracy with fewer parameters compared to
empirical models, though it required careful tuning of kernel
parameters. ANN, while effective, was more complex to tune
and prone to local minima, making SVM the preferred model
for this application [43].

Nazari & Sanjayan (2015) optimized SVM using Genetic
Algorithm (GA), Particle Swarm Optimization (PSO), and
other metaheuristic algorithms to predict the compressive
strength of geopolymer concrete. The hybrid models,
particularly the ICOA-SVM model, achieved superior
prediction accuracy (R? = 0.8993), though they were
computationally intensive due to the optimization process
[44].

Deng et al. (2018) used Convolutional Neural Networks
(CNN) to predict the compressive strength of recycled
aggregate  concrete  (RAC), outperforming both
Backpropagation Neural Networks (BPNN) and SVM in
terms of accuracy and efficiency. CNN’s advantage was its
ability to automatically extract deep features from input data
without requiring manual preprocessing, though it was more
computationally intensive [45].

Kaloop et al. (2019) compared LSSVM, ANN, and
regression models to predict the resilient modulus (Mr) of
recycled concrete aggregate blends. LSSVM achieved the
highest accuracy (R? = 0.982), outperforming both ANN and
regression models, particularly with smaller datasets, though
it required careful tuning of regularization parameters [46].
Cheng et al. (2014) applied the Genetic Weighted Pyramid
Operation Tree (GWPOT) to predict the compressive
strength of high-performance concrete, outperforming ANN
and SVM models. GWPOT provided interpretable
mathematical formulas, offering better transparency, though
it required higher computational resources for optimization
[47].

Zhang et al. (2019) used Random Forest (RF) optimized
with Beetle Antennae Search (BAS) to predict the uniaxial
compressive strength of lightweight self-compacting
concrete. BAS improved the hyperparameter tuning process,
resulting in an R? value of 0.97, significantly outperforming
traditional regression models. However, the computational
complexity was higher due to the optimization process [48].

3.1 Summary of methods

Table 2 provides a detailed summary of studies focusing
on machine learning approaches and their applications in
predicting concrete properties. In the reviewed studies,
machine learning techniques were applied to predict
concrete properties such as compressive strength, tensile
strength, modulus of elasticity, and fracture energy, offering
improvements in accuracy and efficiency over traditional
empirical methods. The following methods were highlighted
for their strengths and weaknesses:

o Artificial Neural Networks (ANNs): ANNs were
frequently applied in predicting nonlinear relationships in
concrete properties, such as compressive strength and
fracture energy. Studies like Tanyildizi (2018) and Song et al.
(2022) demonstrated that ANNs performed well in capturing
complex data patterns [15], [34]. However, ANNs often faced
challenges such as overfitting and the need for large
datasets, which made them computationally expensive. Yu
et al. (2018) and Mozumder et al. (2017) further emphasized
that proper tuning of hyperparameters, such as the number
of hidden neurons and learning rates, is crucial to achieving
high accuracy without overfitting [8], [37].
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e Support Vector Machines (SVMs): SVMs were
consistently highlighted as strong performers, especially
when dealing with smaller datasets, as shown in Yu et al.
(2018), Mozumder et al. (2017), and Yan & Shi (2010) [8],
[37], [43]. SVM models excelled at predicting compressive
strength, fracture characteristics, and elastic modulus,
particularly when optimized using techniques such as
Enhanced Cat Swarm Optimization (ECSO) and the Firefly
Algorithm (FA) [37], [38]. These optimizations significantly
improved convergence and accuracy. However, SVMs can
be computationally intensive and sensitive to
hyperparameter tuning, requiring careful selection of kernel
functions.

e Random Forest (RF): Random Forest models, applied
in studies such as Song et al. (2022) and Zhang et al. (2019),
were particularly effective in handling complex, high-
dimensional datasets [34], [48]. RF’s ability to reduce
overfitting by averaging multiple decision trees made it a
popular choice for predicting properties like compressive
strength. Despite its robustness, RF models are
computationally demanding and require tuning of
hyperparameters such as the number of trees and depth to
achieve optimal results.

e Gradient Boosting and Boosted Regression Trees
(GBRT): Gradient Boosting models were often the most
accurate in predicting concrete properties, particularly in
Song et al. (2022) where they excelled at predicting uniaxial
compressive strength (UCS) [34]. These models effectively
captured nonlinear relationships between variables but came
at a high computational cost due to their iterative learning
process. Gradient Boosting methods like XGBoost are
powerful but require significant tuning to prevent overfitting,
especially when dealing with large datasets.

e Extreme Learning Machines (ELM): Yaseen et al.
(2018) demonstrated that ELM models provided a fast and
computationally efficient method for predicting concrete
properties, particularly lightweight foamed concrete [39].
ELM's ability to train quickly made it useful for simpler
datasets, but it lacked the accuracy of more complex models
like RF and Gradient Boosting when dealing with high-
dimensional or intricate data.

e Gaussian Process Regression (GPR): Omran et al.
(2016) highlighted that GPR was highly accurate in
predicting concrete compressive strength [40]. GPR'’s
probabilistic approach offered the added benefit of
estimating uncertainty, which made it suitable for cases
where confidence in the predictions was critical. However,
GPR’s computational demands increase significantly with
larger datasets, limiting its practicality for large-scale
applications.

e Least Squares Support Vector Machines (LSSVM):
Enhanced versions of SVM, such as LSSVM, were applied
in Pham et al. (2016) and Kaloop et al. (2019) to improve
predictive performance and computational efficiency [38],
[46]. LSSVM, optimized by metaheuristic algorithms like the
Firefly Algorithm (FA), outperformed standard SVM and ANN
models, especially in smaller datasets. However, LSSVM still
required careful tuning of parameters like the regularization
factor to achieve high accuracy.

e Convolutional Neural Networks (CNNs): In Deng et al.
(2018), CNNs were shown to outperform traditional models
like SVM and Backpropagation Neural Networks (BPNN)
when predicting compressive strength in recycled aggregate
concrete [45]. CNNs excelled at automatically extracting
deep features from raw data, which improved accuracy and
reduced the need for manual feature engineering. However,
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models combine the strengths of multiple techniques,

CNNs are computationally intensive and require large

datasets to fully leverage their potential.

improving accuracy by capturing nonlinearities and complex

relationships between variables. However, hybrid models

ANN-MOGWO):

RSM-SVR,

Hybrid models combining machine learning algorithms with

e Hybrid Models (e.g.,

are computationally expensive due to the complexity of

integrating multiple approaches.

optimization techniques, such as Keshtegar et al. (2019)’s

RSM-SVR model,

in

performance

showed superior

predicting complex properties like shear strength [7]. These

Table 2. Summary of Machine Learning Applications in Predicting Concrete Properties: Overview of Data Collection Methods,

Model Types, and Justifications for Model Selection Across Studies

aseqeje/opo) | |00} 990-aid eln 001 200-4d0
10 AMlIGeleAY auluo w_nm__m>.< paso|osIp JON M__NMM_\N_M P8so[osIP JON | P8sO[osIp JON paso|osIp JON p8so|osIp JON p8so|osIp JON
yoedwl sjnsal 9}210U00 .
. . arewl|o Jouadns ypm uoljepljeA paweoy aouewIopad i
(26°0-¥6°0 Aouaoiye |lejuswadxa
pue }s09 Jo} (sempadoid 3JSINY Jo yjbuans aAljoipald
=¥) Aoeinooe pue Aoeinooe . Jsuiebe
uoneziwndo |euonjouny ‘uonoipaid aAIssaldwod pasueyus Buibbeq
uopos|eg [eonsnels ybiy . ybiy Joy pajepijeA
spoddns pue pue ‘e yjbuaiis Bunoipaud ui pue uojssaibal
[9PON yum saruadoud siajoweled . . spoyjlow
sajewnss JUSWIUOIIAUS OdH Joj u spoyjaw Jayjo anlIppe {(Z+86°0 .
J1oj uoneaynsne |euonouny pue ‘ NAS jo _ uioq -N34 0}
Auiepaoun 2]WOU023) onezjjesausab Jano Ayjigelfal = z¥) Aoeinooe
SINDS Jo Alauen uoljezjwndo paJjedwod Jous
UHM UOIIN|OAS 2100S pue Aoeinooe pue Aoeinooe uonolpald isaybiy
apim sainyde) Jouadng obeuane Jamo|
yjbuans Ajigeureysns ybiH Joyadns Joy ay} panalyoe Hdo SABILOE
sainde) saziwndo uasoyod N3 POASILRE HAS
UAS 9311 GIN I Sont (W34) pouren
(100} NAS UAS-ST _ _ sofenin ‘o011 43y
DO 10 odk uoissalbal cmmm_MMMMn_ 20g-1do) -uoneziwndo paziwndo ww_mﬂ__\,_oﬁm_\,_._m_v ‘dSIN ‘Buibbeg o _ﬁw:_hﬁw_m_ )
[SPOIN ¥ L Jehel-niniy o oE@ wyyuoby wiems jeQ -wyobly mc_.u me_\,_ uoissaibay h.o_.wn_wwm\m/w
paziouy oneus peoueyus Aou o 1 onppY ‘Uoissaifoy | UOISSBI00N
3 $9S59001d UeISSNES) 199\ Hoddng
ssaibul apuojyo uoljeuoqgJes sninou
‘@oue)s|Isal ‘RiAnsisal P
sa|qeuen UONBUOIED yibuans opLIOIUD yibuais yibuans yibuans yibuans s,bunoA
ndino ".“ a aAIssaldwo) "v. 4 aAIssaldwo) aAIssaldwo) aAIssaldwo) aAIssaldwo) ‘yibuais
YBuens duwnis aAlssaldwo)
‘dwn|s ‘yibuang :
(eoue)sisal abe Buuno awn
uoljeuogJed ‘sojebaibbe Buuno I8 Iy 0101\ ‘ejebaibbe Ajisusp
. awn[oA
yibuans sainjes) sJojeolpul auly pue zionpseldiadns WEo! ‘onel JybBramiybi| sypAey a)ebaibbe
‘dwnis “6°9) juan}iIsuod Ajligeureisns 9s.1e0d ‘1oz ‘191em 4o ‘lonelb ead ‘pues ‘awn|oA
‘ ‘ . Japulg/ieyem h )
sa|qele ndu) sliojaweled ZL ‘sannuenb suoipodouid 1ose|diadns ajebaibbe ) yse A} ‘leusew a)ebaibbe
Ajsuap Aup
ubisap Xiw INDS ‘onel} Xiw ‘yse A} 951200 = SNONIIUBWSD ‘JUsWad Jo
. . . USAO ‘JUBIU0D ; . .
sabejuaolad UETVTET YIS VY sadA} WOS be|s aoeulny wnipaw pue UoWS 1a)em ‘abe Ayuenb ‘onel
juswaoe|dal 1se|q ‘Juswad llews ‘pues ¥ o Buuno ‘adAy} Juswa) JUBWSD/IBYEAN
‘sadA) NOS FEIETY juswa)
9215 aseqgeleq sjuiod SoxIW 9626 oﬁ%ﬂ%n_ EIEp JO SS9} BEZ sjuiod ejep |6 sjuiod eyep i) salnxiw 08|
: ejep +0591 : sdnoib 1L9/1 ’ ’ ’
woly paAuaQ
(020Z-2102 00(-aid BIA (5102-8661) 1o9foud ainjesay| MWM@MW
$90In0S y salpn}s ainjonJjsesyul - uonoipald yjbuans
uono9||0D wou} eyep ayis suonoipaid wol} pansujal o)ebaibby
0G < wouy eyep €81 wouy anH eg ebN aAIssaIdwod Jo}
ejeq Jo poyls\ qol) Jeseiep [epow aseqejep wbremybI
|eyuswadxg pa109]|09 8y} woulj eyep ejep [eluswpadxy
Jedisnpu| uoissalboy |eyuswiadx3 woulj eyep
eleq |leyuswiadxy [eluewpadxg
sousIelEY [ollzzoz [oclyzoz [selezoe [2€l8102 [selsioz [6clgLoz [ovloLoz [oll6L02
“le 10 zojeH “le 10 Jayiald “le 10 zojeH “le1e nA “le 1@ weyd “le 10 usase A “le 1@ uelwQ “|e 19 oloejuog

Building Materials and Structures 67 (2024) 2400012K



Application of machine learning in asphalt and concrete material testing: a comprehensive review

paso|osIp pasoosip
peso[osIp JON p8so[osIp JON paso|osIp JON paso|osIp JON paso|osIp JON 10N paso|osIp JON paso|osIp JON 10N p8so|osIp JON p8so|osIp JON
uonoipaid
(L026°0 = 2H) sjgpowl Ayoedeo Jeays eusiIo Iy SN —— Aousioiye
a panoi o o1 | ursuogemuios | U0 e puk PUOSH | iodoos | PUOBPEN | o oo | suoneoydde | SR
ww_:xw__ ' mmmafw_ﬁﬁdm u. . mo_.wa_Em ' O um PEO| ainjiey 10 3dVIN o chh S 0} pe.eduiod " ue eopoe.d oljel v_>> ue
_o_ .c m ‘ F.o m _cm. ‘ c__\c,.__w_/%mw.n_u no pue siejpuie.ed pue ISINY wv,\,_wrwwac._ﬂg Aunge u >omﬂ:oom 104 SEINULIOY w.w: M\wahw
,w>_memmrmoo E m_n_<_>_, o o 3 .u 2z< “uol w__ mwa aimoey |ie 10} (66°0  SPoLeL Bunoipeid onezleisush ul sjopow Holdxd w_u_ uapl .wu
| . ASINY '8066°0 dAS 'INSY oIp < ,¥) eouewopad uoissaibal oIp pue | s8p! polelousb payuep! .
10} 66°0 =¥) Aoeinooe auojepue)s 9oUBLEA U}IM ul Aoeunooe . uoissalbal . ajowelediadAy
aAnoIpald Jus|eoxa pue Aouaiolye ‘NIS3T
= z¥) Aoeinooe uonoipald Jano Aoeinooe Aoeinooe “o160| A Joyadns . pue ; ’ 4¥ paun} Syg
pansiyoe YAS oIbo| Azzny uolsioaid pue ‘WAS NNV () a
annolpald ysaybiy sy Jouadns 1s9q NNV P panalyoe 1oub NNV pa owoLadin ((26'0 = o)
}s9q 8y} pajesysuowap pajesysuowap ay} pansiyoe swiopadino | SlePow pUgAH vw>m_r._w_< wuopadino P HOAINO Aoeunooe ybiH
pamoys NNV (EISSIRSINS HAS-INSYH NAY WAS ' WASST
VOOI ( ) [EX]
NNV ‘(48 (WAS) 'vooav lopow 10dMO -Sv4) ¥saio4
. ‘ 93] uoneledo WopUE
. |enuauodx3 HAS NNV ‘NAY aulyoep YOOV Bujuies| NNV WBIA puey
WAS NNV ‘letwouiod -NSY PUGAH ‘WASST dAS 101991 'VOSd VO dosp ‘WASST O B -4oIess
‘49Y) UAS poddng Aq pazjundo paseq-NND PaIYDISM srUUSIUY
NAS oneuUsD opeag
peoj ain|ie}
ybuans 9)8I0U0D .
sweaq juswaoe|ds| Bujuado (03) yibuans
|ednxaly pPauBU0d-d¥y 4 yibuans ; yibuans yibuans snjnpow ybuans
. OY4s Jo di3 0.0 [} ‘I0JOR) snjnpow anIssaidwod
yibuans jo yjbuans aAIssaldwo) aAIssaldwo) aAIssaldwo) JualjIsay aAIssaldwo)
Ayoedeod Jeays Ayisuaju| ssaljs [BO)LD onse|3 lelxelun
aAIssaldwo) aAIssaldwo) .
ABiaua ainjoel
yjbuans ajisusy sajpadoid ojebaibbe mcoz_mcoo ohel obe alnjeladwa)
B Buuno ‘HOM juswaoe|dal . )
ainjesadwsay SSaUIIY} Jaql |99)s 9s1eod \ . ) ssaljs sajebaibbe JusUod
. . . . . Ayonsere Jo sninpow HOEN 48 use Al ‘onel
jusjuoo dyd ‘yibuans oljed yidap pues ‘4oz ) Jeays aul VON pue
yibuauis s|isusy (oy) zionpseldiadns juswaoe|dal . . b
a)ebaibbe aAIssaldwod -0}-ueds Jeays 1osejdiadns . . ssaljs pue asleod V4N ‘Jusjuod
. . . . yibualys anissaidwod yibuans o 1a)em o)eboaibbe .
19q1} onel yibuans |99)s onel . . )Ing ‘sajels | Jazonse|diadns 0 pue
A oljel Juswag/iajem AIssaidwo) ajebaibbe auly/asleod : ;
uogJed ‘awny 19)@Wwelpaybiay |euipnyibuol Japmod/ieyem . ssals 19)eM B1109S JUBIU0D
f X . . Ajowoasb weag aul pajohoal . . .
eoI|IS ‘JUswan 19)9Welp yibuans yse . onels NOY Be|s ‘yse Jaqy [99)s pue
J8puljhio aAIssaldwo) Al ‘yuswan puE 8SI00 Ofed JusLISD Aly yuswa) dd ‘ones g/m
; : ‘Beys ‘yse A4 -19]ep\ ;
(DSN) sesea
sjuiod ) sjasejep
sa|dwes ggz sa|dwes gg| sajdwes 0g sjosejep /8 0/ “(DSH) sjeselep /y¢l sjoselep 7/ sa|dwes 0gol sa|dwes gL
elep vl seseo 68 8cl
] Spualq
9)9I0U09 S)58} 8ja1ouoo suiesq Mrmﬂﬁv __m 9)8I0U0d Sreoue mww MW%HMU
\ paddeim 9]940U00 ¥ IPPIS JSHN pue DSH OSH ainjeJal| 4 [eyebaibbe Kioysodal 4
JyBramybi| ) _ Aq aseqgeiep pue DSN pajohoal Si0k%0. -J|es
dy4 snouea paoiojuial-1aqy Uo S}S98} 9IN}oBl} WO} woulj eyep pa| 10N wouj eyep
Jo} ejep U 008 Joj ejep | uo ejep wol b1emyybI| 1oy
wiou} eyep |199)s 10} Byep ejep [ejuswnadx3y |leyuswiadxy 4 leyuswadxy
|ejuswadxy wolj eyep ejuswadxy |leyuswiadxy josejep paseq
|eluswedxy |eluswiedxy ejep |e
|ejuswiadx3 Juswpadxg -Aojesoqge
5118102 [81210Z “Ie 11610z “Ie [LlvLoz [zl 102 [evloLoz Nt (518102 lorleloz [L1r102 [8¥161.02
‘1zipjiAue | J0 JopWNZOo 1o Jebajysoy “le 18 JoAly “le 18 [eJean ‘Ilys pue ue pue :.mNmz “le 1@ BueQ o doojey] “le 1@ Buayn e 1o Bueyz

Building Materials and Structures 67 (2024) 2400012K



Application of machine learning in asphalt and concrete material testing: a comprehensive review

3.2 Overall trends

The studies consistently demonstrated that ensemble
methods like Random Forest and Gradient Boosting
delivered the best performance in predicting concrete
properties, excelling in handling high-dimensional datasets
and capturing complex nonlinear relationships. However,
these methods were computationally demanding and
required careful tuning.

Support Vector Machines (SVMs), particularly when
enhanced with optimization algorithms, were effective for
smaller datasets but required significant computational
resources and careful parameter tuning. Artificial Neural
Networks (ANNs) were highly accurate in capturing complex
relationships but often suffered from overfitting and required
large datasets and computational resources.

Hybrid models, such as RSM-SVR and ANN-MOGWO,
offered the highest accuracy by combining the strengths of
multiple approaches, but their complexity and computational
requirements made them more suitable for research
applications.

Convolutional Neural Networks (CNNs) and Gaussian
Process Regression (GPR) were also strong performers,
with CNNs excelling at feature extraction and GPR providing
uncertainty estimates. However, both models required
substantial computational power.

In summary, ensemble methods and hybrid models
proved to be the most accurate, while SVMs and ANNs were
useful but required extensive tuning. The model choice
ultimately depended on the dataset size, complexity, and
available computational resources.

4 Classification and pattern recognition in pavement
systems

Machine learning models, particularly unsupervised
learning methods, have been instrumental in classifying
pavement conditions, detecting cracks, and identifying
patterns that are crucial for effective pavement management.
Below is a detailed analysis of several studies using
unsupervised models to address pavement-related
problems.

Shao et al. (2022) applied K-means clustering to classify
pavement performance patterns based on long-term
Pavement Condition Index (PCI) and Riding Quality Index
(RQI) data. Their model classified pavement performance
into five distinct patterns, facilitating the evaluation of road
maintenance strategies. The key strengths of K-means were
its simplicity and ability to process large datasets effectively.
However, its requirement to predefine the number of clusters
and its sensitivity to data with varying densities or missing
values were major limitations, suggesting the need for more
adaptive models to achieve greater accuracy [49].

Mathavan et al. (2014) used a Self-Organizing Map
(SOM), an unsupervised neural network, to classify doweled
concrete pavement joints based on Falling Weight
Deflectometer (FWD) data. Input parameters included load
transfer efficiency (LTE), void intercepts (VI), and absolute
deflection (D). SOM classified the joints into three categories:
good, marginal, and poor. The model achieved an accuracy
of 65-70%, improving to 87.5% when only LTE and D were
used, demonstrating the potential to reduce human
inconsistencies in manual assessments. The pros of SOM
include its ability to capture complex patterns and automate
classification, though its slow training process and sensitivity
to unbalanced data were notable drawbacks [50].

Mubashshira et al. (2020) employed K-means clustering
to detect road surface cracks by segmenting 2D road surface
images. After preprocessing to reduce noise, K-means was
used for image segmentation, followed by Otsu thresholding
and morphological operations to refine the detected cracks.
The model achieved an average detection accuracy of
97.75%, outperforming traditional edge detection methods
by reducing false negatives. While K-means clustering was
effective in handling noise and irregularities, its efficiency
was limited by the reliance on post-processing steps,
particularly for large-scale real-time applications [51].

Li et al. (2021) proposed a novel model that fused
Convolutional Neural Networks (CNN) with K-means
clustering for road crack classification. The input data
consisted of crack images collected via automated vehicles
and smartphones, and the model classified crack types—
transverse, longitudinal, and alligator cracks—with
accuracies of 80.6%, 79.2%, and 91.3%, respectively. The
fusion of CNN and K-means allowed for iterative refinement
of clustering assignments, reducing the need for manually
labeled data. However, the model faced challenges due to
its high computational cost during training and the need for
extensive optimization [52].

Golmohammadi et al. (2024) combined PCA and
DBSCAN for anomaly detection in pavement health
monitoring using Fiber Bragg Grating (FBG) sensors. The
system processed strain and temperature data to detect
structural anomalies in pavement layers. DBSCAN
effectively distinguished between normal and abnormal
patterns without labeled data, demonstrating high accuracy
in anomaly detection. The system, however, was sensitive to
sensor placement and required considerable computational
resources for continuous monitoring [53].

Abdelmawla et al. (2021) utilized PCA and K-means
clustering to classify pavement cracks from 1,125 road
surface images. The input images were preprocessed with
edge detection and morphological operations, followed by
dimensionality reduction using PCA and clustering using K-
means. The study identified three clusters: multi-directional
cracks, longitudinal cracks, and images without cracks. PCA
reduced dimensionality, improving computational efficiency,
but struggled with nonlinear relationships in the data. K-
means effectively classified the cracks, although it was
sensitive to initial cluster assignments [54].

Dong et al. (2021) classified climatic regions for
pavement systems using PCA and K-means clustering. Input
data from the Long-Term Pavement Performance (LTPP)
database included 16 climate variables. Four primary
clusters—wet no freeze, dry no freeze, dry freeze, and snow
freeze—were identified, and results from Artificial Neural
Networks (ANN) and Fisher’s linear discriminant analysis
were compared. ANN achieved higher prediction accuracy
than discriminant analysis, though ANN required more tuning
and computational power. K-means clustering proved
efficient for handling large datasets, though the need to
predefine clusters remained a limitation [55].

Shi et al. (2024) applied K-means clustering to analyze
Acoustic Emission (AE) data from epoxy asphalt mixtures
with varying crumb rubber (CR) content. Four damage
modes were identified: cohesive cracking, aggregate-asphalt
interface cracking, aggregate fracture, and aggregate
friction. The model effectively classified AE signals and
demonstrated that 4% CR content was optimal for balancing
toughness and strength. However, the model’s sensitivity to
initial cluster selection and overlapping clusters presented
challenges, especially when dealing with highly correlated
data [56].
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Akhtar et al. (2020) implemented a parallel K-means
clustering model to assess adhesion failure in Warm Mix
Asphalt (WMA) through high-resolution image processing.
The model reduced execution time by 30-46% compared to
sequential K-means clustering, improving the detection of
adhesion failure. Although the parallel model handled large
image datasets more efficiently, its complexity and sensitivity
to initial cluster centers posed challenges during
the implementation [57].

Sahari Moghadam et al. used K-means clustering in
conjunction with k-nearest neighbors (KNN) and support
vector machines (SVM) to classify asphalt coating conditions
in loose mixtures. The input images from static immersion
tests were segmented using K-means, followed by
classification using KNN and SVM. The model improved
classification accuracy by reducing human bias, though it
was sensitive to image quality and relied on robust
preprocessing steps to ensure accuracy [58].

4.1 Summary of methods

Table 3 provides a detailed summary of studies focusing
on machine learning approaches and their applications in
classification and pattern recognition for pavement systems.
Unsupervised learning techniques, particularly clustering
and pattern recognition methods, have been extensively
applied in pavement system classification and anomaly
detection. Here’s an overview of the key methods:

e K-means Clustering: Widely used for classifying
pavement performance patterns, crack detection, and
assessing asphalt coating conditions (Shao et al., 2022;
Akhtar et al., 2020). Its simplicity and efficiency in handling
large datasets are advantageous, but it often struggles with
predefined cluster requirements and sensitivity to initial
conditions [49], [57].

e Principal Component Analysis (PCA): Commonly
paired with K-means for dimensionality reduction, PCA
improved computational efficiency in multi-dimensional data
applications like crack classification and climate region
analysis (Abdelmawla et al., 2021; Dong et al., 2021) [54],
[55]. However, PCA's linearity limits its ability to capture
complex relationships.

e Self-Organizing Maps (SOM): Used for classifying
pavement joint conditions (Mathavan et al., 2014). SOM
excels at handling high-dimensional data but has a slow
training process and reduced accuracy with unbalanced
datasets [50].

e Convolutional Neural Networks (CNN): When
combined with K-means, CNN was effective for road crack
classification, automating feature extraction and improving
classification performance (Li et al., 2021). The downside is
its high computational cost and complexity in optimization
[52].

o DBSCAN: Applied for anomaly detection in pavement
monitoring systems (Golmohammadi et al., 2024), DBSCAN
is effective in handling unlabelled data, though sensitive to
sensor placement and computationally intensive in
continuous monitoring [53].

o Parallel K-means Clustering: Enhanced efficiency in
large-scale image processing tasks by reducing execution
time (Akhtar et al., 2020). However, its implementation is
complex, particularly when managing communication
between computing nodes [57].

e K-means with Supervised Classifiers (KNN, SVM):
Combining K-means with KNN or SVM improved accuracy in
tasks like asphalt coating assessment but required high-
quality image data for optimal performance (Sahari
Moghadam et al.) [58].

Table 3. Summary of machine learning applications in classification and pattern recognition in pavement systems: overview
of data collection methods, model types, and justifications for model selection across studies
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implementations, like

Parallel

demands.
Parallel K-means, improved processing times but introduced

computational
complexity

4.2 Overall trends

Hybrid models combining

in deployment.

K-means clustering emerged as a dominant method for
its simplicity and effectiveness in pavement performance
analysis, but it often required careful parameter tuning and
was limited by predefined clusters. PCA was valuable for
dimensionality reduction but struggled with nonlinearity.

unsupervised and supervised techniques, such as K-means

with KNN and SVM, offered higher accuracy but depended

on data quality and preprocessing efforts.

Table 4 below provides a concise summary of the
machine learning methods applied across various studies in

SOM and DBSCAN offered robust -classification and

asphalt mixture performance, concrete property prediction,
and pavement classification. It outlines the key advantages

and disadvantages of each method, complementing the

trends discussed in the preceding sections.

anomaly detection in high-dimensional and sensor data,

respectively, though at the cost of computational efficiency.

The combination of CNN with K-means showed promise
in handling complex, image-based data, albeit with high
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Table 4. Summary of machine learning methods, advantages, and disadvantages across pavement and concrete

applications
Meth Category A
ethod A C P dvantages
e Captures complex nonlinear relationships
Artificial T:lljlﬁé),\l etworks X % High accuracy in predicting performance
metrics
Support Vector Machines < | x Handles nonlinear relationships well
(SVMs) Effective with smaller datasets
. High accuracy and handles complex
Boos(tBirza?)l(ngltBoost X % nonlinear relationships
9 Regularization avoids overfitting
Random Forest (RF) % | x Good mterpretgfb(l)ll\t)é r?i?tciinrgobust handling
Gaussian Process Provides accurate predictions and
Regression (GPR) x X uncertainty estimates. Handles complex
9 nonlinear relationships well
Gene Expression .
Programming (GEP) x Offers transparent, interpretable models
. Optimizes parameter selection
Hybrid Models (e.g., SYM Improves prediction accuracy and model

with optimization)

Self-Organizing Maps
(SOM)

DBSCAN

Convolutional Neural
Networks (CNN)

Parallel K-means

K-means Clustering

Principal Component
Analysis (PCA)

X

convergence

Captures complex patterns in high-

dimensional data
Reduces inconsistencies in manual
classification
Effective in anomaly detection with
unlabelled data
Handles noisy data
Automatically extracts deep features from
images
Highly effective for image-based crack
detection and classification

Reduces execution time by 30-46%
Efficient for large-scale image processing

Simple and efficient for large datasets
Effective in crack detection and pavement
classification

Reduces dimensionality, improving
computational efficiency

Disadvantages

Computationally intensive
Prone to overfitting
Requires large datasets
Sensitive to parameter tuning
Computationally expensive for
large datasets
Requires significant computational
power
Complex tuning required
Less accurate compared to
ensemble methods
Computationally expensive
Computationally demanding.
Requires careful tuning of
hyperparameters
Requires precise tuning
Limited for large and complex
datasets
Computationally intensive
Requires additional resources for
optimization algorithms

Slow training process
Struggles with unbalanced
datasets

Sensitive to sensor placement
Computationally intensive for
continuous monitoring

High computational cost
Requires extensive optimization
and tuning of hyperparameters

Complex implementation
Communication overhead
between nodes
Requires predefined cluster
number
Sensitive to initial conditions and
varying densities
Limited by linearity, struggles with
complex relationships

Note: A is Asphalt Mixture Performance and Optimization, C is Concrete Property Prediction and Structural Performance, P is
Classification and Pattern Recognition in Pavement Systems

5 Conclusion

This literature review examines the application of
machine learning techniques in material testing across three
key areas: asphalt mixture performance, concrete property
prediction, and classification and pattern recognition in
pavement systems. The studies demonstrate the significant
potential of machine learning to improve prediction accuracy,
optimize material design, and reduce reliance on costly
experimental testing.

Across all categories, models such as Atrtificial Neural
Networks (ANNs), Support Vector Machines (SVMs),
Random Forests (RF), Gradient Boosting (GB), Gaussian
Process Regression (GPR), and Convolutional Neural
Networks (CNN) show strong predictive capabilities for
complex material behaviors. While ANN and SVM models

Building Materials and Structures 67 (2024) 2400012K

are effective for smaller datasets, ensemble methods like GB
and RF excel in handling larger, nonlinear data sets but are
computationally expensive. GPR stands out for its ability to
model complex relationships and provide uncertainty
estimates, particularly in small to medium datasets, though it
requires extensive tuning and computational power. Deep
learning methods, such as CNN, extract deep features
without manual preprocessing but require significant
computational resources.

In classification and pattern recognition, unsupervised
models, especially K-means clustering, are frequently
applied for pavement condition classification and crack
detection. Principal Component Analysis (PCA) is often used
for dimensionality reduction, improving model efficiency but
facing challenges with nonlinearity. Advanced techniques
such as DBSCAN and CNNs are gaining traction for anomaly
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detection and feature extraction but require extensive
computational power and proper parameter tuning.

In general, machine learning models are effective tools in
material testing and performance prediction, offering
flexibility and accuracy, though computational complexity
and data quality remain key challenges.
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