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A r t i c l e  h i s t o r y  A B S T R A C T  

This literature review explores the application of machine learning (ML) techniques 
in civil engineering material testing, with a focus on asphalt mixtures, concrete 
properties, and pavement system classification. The review provides a 
comprehensive comparison of various ML models, including Artificial Neural 
Networks (ANNs), Support Vector Machines (SVMs), Random Forest (RF), 
Gradient Boosting (GB), and Gaussian Process Regression (GPR), assessing their 
strengths and limitations in predicting material performance. Key findings indicate 
that ensemble methods, such as Gradient Boosting and XGBoost, consistently 
outperformed other models in terms of prediction accuracy and handling nonlinear 
relationships, although they require significant computational power. In contrast, 
simpler models like SVM and ANN demonstrated strong predictive capabilities with 
smaller datasets but were prone to overfitting and computational challenges. 
Additionally, unsupervised learning methods, such as K-means clustering and 
Principal Component Analysis (PCA), proved effective in classifying pavement 
conditions and detecting anomalies, with K-means offering simplicity and efficiency 
at the cost of sensitivity to initialization and cluster definitions. The review concludes 
by emphasizing the potential of hybrid and ensemble models to improve prediction 
accuracy and reduce computational costs, highlighting the need for further research 
to address data availability, model interpretability, and practical implementation 
challenges in real-world applications. 
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1 Introduction 

Civil engineering has long relied on empirical methods 
and extensive experimental testing to evaluate the 
performance of materials, structures, and infrastructure 
systems. However, the increasing complexity of modern 
construction projects and the growing need for more 
accurate predictions of material behavior under varying 
conditions have led to a shift towards more data-driven 
approaches. In this context, machine learning (ML) has 
emerged as a powerful tool for advancing civil engineering, 
particularly in the field of material testing and performance 
prediction [1], [2]. 

Machine learning enables civil engineers to analyze vast 
amounts of experimental data, detect patterns, and build 
predictive models that can forecast material behavior under 
different loading conditions, environmental factors, and time 
frames. With the ability to model nonlinear relationships and 
optimize multiple variables simultaneously, ML offers 
significant advantages over traditional statistical and 
empirical models [3], [4]. It can enhance decision-making 
processes in areas such as material design, optimization, 
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and failure prediction, thereby reducing costs, increasing 
efficiency, and improving overall performance [2], [5].  
 
1.1 Machine learning in material testing  
 

In civil engineering, material testing is critical for 
determining the properties of construction materials such as 
asphalt, concrete, and fiber-reinforced composites. These 
materials exhibit complex behaviors when subjected to 
stress, temperature changes, and aging. Machine learning 
models can simulate these behaviors and offer insights that 
would otherwise require costly and time-consuming physical 
tests [6]–[8]. 

For example, ML algorithms are used to predict key 
material properties such as compressive strength, modulus 
of elasticity, tensile strength, rut depth, fracture energy, and 
more. Techniques such as Artificial Neural Networks (ANNs), 
Support Vector Machines (SVMs), Random Forests (RF), 
and Gradient Boosting (GB) have demonstrated strong 
predictive capabilities in areas like asphalt mixture 
performance and concrete strength estimation. These 
models not only improve the accuracy of predictions but also 
allow for the integration of a wide range of input parameters, 
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such as material composition, environmental conditions, and 
load types [6], [9]–[11].  
 
1.2 Advantages and challenges  
 

The application of machine learning in material testing 
offers several advantages. First, it reduces the reliance on 
extensive experimental testing by providing accurate 
predictions based on historical data. This is especially 
beneficial in large-scale infrastructure projects with limited 
time and resources [12]–[14]. Second, ML models are highly 
flexible, and able to account for nonlinear interactions 
between multiple variables, thus offering deeper insights into 
how different factors influence material behavior [15], [16]. 
Finally, these models can be continually improved as more 
data becomes available, leading to more refined predictions 
over time [17]–[19]. 

However, the adoption of machine learning in civil 
engineering also presents challenges. One of the primary 
concerns is the availability and quality of data. ML models 
require large datasets to function effectively, and 
inconsistencies in data collection can lead to inaccurate 
predictions [20], [21]. Moreover, the "black box" nature of 
some machine learning algorithms, particularly deep 
learning models, may hinder the interpretability of results, 
making it difficult for engineers to trust the outcomes without 
a clear understanding of how predictions were generated 
[22].  
 
1.3 Current trends in research 

 
Recent research in civil engineering has explored the use 

of machine learning models to solve complex material testing 
problems, including asphalt mixture performance and 
optimization, concrete property prediction and structural 
performance, and classification and pattern recognition in 
pavement systems. Many studies have demonstrated the 
effectiveness of machine learning in improving accuracy, 
reducing experimental costs, and providing actionable 

insights for material design and testing. For example, 
Artificial Neural Networks (ANNs) have been widely used to 
predict the compressive strength of concrete, while Support 
Vector Machines (SVMs) have shown strong performance in 
predicting fracture energy and elastic modulus in various 
materials [9], [10], [15]. Figure 1 illustrates key machine 
learning methods in civil engineering material testing, 
organized by learning type (supervised, unsupervised, 
ensemble, hybrid) and their applications in asphalt, concrete, 
and pavement analysis. 
 
1.4 Scope of this review 

 
This literature review aims to provide a comprehensive 

overview of the applications of machine learning in material 
testing within civil engineering, focusing on the following 
three key areas: 

• Asphalt Mixture Performance and Optimization: 
Includes studies predicting the properties of asphalt 
mixtures, such as dynamic modulus, rut depth, and binder 
content, as well as optimizing asphalt mix designs. 

• Concrete Property Prediction and Structural 
Performance: Covers the prediction of concrete properties 
like compressive strength, elasticity, and shear strength, as 
well as the performance of fiber-reinforced concrete. 

• Classification and Pattern Recognition in Pavement 
Systems: Discusses studies that use machine learning to 
classify pavement distress, predict cracking patterns, and 
identify structural issues within pavement systems. 

The review will discuss the different machine learning 
models used in literature, the key performance metrics they 
predict, and the pros and cons of each approach. Special 
emphasis will be placed on comparing multiple models 
applied simultaneously in material testing, as researchers 
increasingly use ensemble methods and comparative 
analysis to identify the best-performing models for specific 
engineering problems. 

 

 

Figure 1. Machine learning methods in civil engineering material testing 
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2 Asphalt mixture performance and optimization 

Machine learning has played a transformative role in the 
prediction and optimization of asphalt mixture performance, 
with various models being applied to forecast essential 
performance metrics such as dynamic modulus, rut depth, 
and Marshall stability.  

Fan et al. (2024) utilized a Back-Propagation Neural 
Network (BPNN) and Support Vector Machine (SVM) to 
predict the strength of asphalt mixtures across diverse 
service conditions. They considered inputs such as stress 
states (direct tensile, uniaxial compression, indirect tensile, 
and four-point bending), temperature ranges from −25°C to 
35°C, and loading rates between 0.02 MPa/s and 0.5 MPa/s. 
While SVM achieved slightly better accuracy (R² of 0.9983) 
than BPNN (R² of 0.9979), BPNN performed better in terms 
of minimizing small errors (Mean Absolute Percentage 
Deviation: 0.067 vs. 0.145). This demonstrated that although 
SVM excels in accuracy, BPNN could offer more consistent 
performance in specific scenarios by reducing smaller errors 
[2]. 

Upadhya et al. (2022) applied ANN, SVM, Gaussian 
Processes (GP), and Random Forest (RF) to predict the 
Marshall stability of glass fiber-reinforced asphalt mixes. The 
input variables included bitumen content, glass fiber content, 
fiber length, and bitumen grade, while the output variable 
was Marshall stability. The study showed that SVM with a 
Pearson Universal Kernel (PUK) achieved the best results 
(CC = 0.8776 and RMSE = 1.9653), making it the most 
accurate model for this application. ANN demonstrated 
reliable performance but showed higher errors during the 
testing phase, while GP and RF performed competitively but 
were outperformed by SVM. The results emphasized SVM's 
strength in managing nonlinear relationships, though its 
effectiveness depended heavily on kernel tuning, which 
posed a challenge in some applications [6]. 

In the study by Rondinella et al. (2023), SVM and 
Categorical Boosting (CatBoost) were applied to predict the 
mechanical and volumetric properties of road pavement 
asphalt mixtures incorporating recycled materials such as 
construction and demolition waste (C&DW) and reclaimed 
asphalt pavement (RAP). The input variables included 
gyratory revolutions, RAP content, water content, and 
bitumen properties, with the output variables being indirect 
tensile strength (ITS) and saturated surface dry voids 
(SSDV). CatBoost demonstrated superior accuracy (R² = 
0.9916 for ITS) compared to SVM (R² = 0.8828), particularly 
excelling in handling categorical data, which made it more 
efficient for complex material datasets [4]. 

The study by Khorshidi et al. (2023) investigated the 
effects of different proportions of alternative materials, 
including Reclaimed Asphalt Pavement (RAP), crumb rubber 
(CR), steel slag (SS), and waste engine oil (WEO), on the 
performance of asphalt mixtures. Using 44 mixtures with 
varying RAP (0–75%), WEO (0–15%), CR (0–15%), and SS 
(0% or 20%) contents, the study evaluated cracking 
resistance, rutting resistance, and moisture damage. 
Machine learning models, including feed-forward neural 
networks (FNN), generalized linear models (GLM), support 
vector regression (SVR), and Gaussian process regression 
(GPR), were applied to predict the optimal content 
combinations. GPR performed the best, accurately 
identifying the most suitable material ratios for different high-
traffic conditions. While GPR effectively modeled complex 
relationships, its computational demands and tuning 
requirements were noted as challenges. The study 
concluded that GPR provided reliable predictions for 

optimizing the balance between cracking resistance, rutting 
resistance, and moisture damage in asphalt mixtures with 
recycled materials [23]. 

Another study conducted by Khorshidi et al. (2023) 
assessed the effects of RAP, CR, SS, and WEO on the 
cracking resistance of asphalt mixtures. Using performance 
indices from the Illinois Flexibility Index Test (I-FIT), a deep 
neural network (DNN) model was applied to predict mixture 
performance and was compared with linear and polynomial 
regression models. The DNN outperformed the other 
models, achieving a coefficient of determination (R²) of 0.84, 
compared to 0.60 for linear and 0.66 for polynomial 
regression. DNN’s advantages included its ability to capture 
complex nonlinear relationships, providing more accurate 
predictions. However, it required more data and 
computational resources. Overall, DNN proved to be a 
reliable model for predicting cracking resistance in asphalt 
mixtures with recycled materials [5]. 

Liu et al. (2023) applied multiple models, including SVR, 
KRR, ANN, Gradient Boosting (GB), and XGBoost, to predict 
the dynamic modulus (|E*|) of asphalt mixtures. The input 
variables consisted of temperature, loading frequency, 
binder properties (such as viscosity and phase angle), and 
aggregate gradation. XGBoost delivered the highest 
accuracy (R² = 0.9867, RMSE = 2.7422) due to its ability to 
handle nonlinear interactions and prevent overfitting through 
regularization techniques. However, it required considerable 
computational resources, which posed a limitation for its 
scalability in large-scale applications. Other models like 
ANN, while effective, were prone to overfitting and required 
substantial hyperparameter tuning, which made them less 
practical for routine use [1]. 

Liu et al. (2022) further explored the prediction of rut 
depth using SVR, RF, ANN, and GB models. The input 
variables included traffic data (e.g., Equivalent Single Axle 
Loads, ESALs), climate conditions, pavement material 
properties (e.g., binder content, air voids), and structural 
attributes (layer thicknesses). GB was identified as the best-
performing model, achieving an R² of 0.9236, showcasing its 
effectiveness in capturing nonlinear interactions within the 
dataset. While ANN also performed well (R² = 0.9021), it 
required more computational power and tuning. RF lagged in 
performance with lower accuracy, while SVR showed 
significant variance in predictions due to its sensitivity to 
parameter selection [24]. 

In a separate study, Liu et al. (2022) used machine 
learning models to predict effective asphalt content (Pbe) 
and absorbed asphalt content (Pba) in asphalt mixtures. 
Gradient Boosting was the top performer, with R² values of 
0.9479 and 0.9459 for Pbe and Pba, respectively, excelling 
in managing nonlinear relationships. RF performed 
adequately but was less accurate compared to Gradient 
Boosting. SVR showed moderate accuracy but was more 
prone to performance drops when handling larger datasets 
[25]. 

Liu et al. (2022) also explored the prediction of the 
International Roughness Index (IRI) of asphalt pavements 
using Support Vector Regression (SVR), Random Forest 
(RF), Artificial Neural Networks (ANN), Gaussian Process 
Regression (GPR), Extra-Trees, and Gradient Boosting 
(GB), combined with dimensionality reduction techniques 
like Autoencoders (AE), Principal Component Analysis 
(PCA), and Recursive Feature Elimination (RFE). The input 
variables included temperature, Equivalent Single Axle 
Loads (ESALs), layer thickness, binder content, air voids, 
and aggregate gradation, while the output variable was IRI. 
The AE-GPR model demonstrated the highest accuracy      
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(R² = 0.939), outperforming other models by efficiently 
managing high-dimensional data. Autoencoders significantly 
improved model performance by reducing input noise and 
computational load. In contrast, models like SVR and RF 
showed lower performance due to overfitting and sensitivity 
to hyperparameter tuning, while ANN performed well but was 
computationally expensive [26]. 

Majidifard et al. (2020) employed Gene Expression 
Programming (GEP) to predict rut depth in asphalt mixtures 
subjected to the Hamburg Wheel-Tracking Test (HWTT). 
The model inputs included asphalt binder properties, 
aggregate size, and reclaimed asphalt content, while the 
output was rut depth. GEP outperformed ANN by providing 
explicit mathematical expressions, making the model more 
interpretable and offering engineers insights into the factors 
driving rutting behavior. However, GEP required careful 
tuning of parameters like chromosome length, limiting its 
practicality for complex datasets [27]. 

Rahman et al. (2021) explored various ensemble 
methods, including Extra-Trees, GB, and SVR, to predict rut 
depth and indirect tensile (IDT) strength in asphalt mixtures. 
Extra-Trees demonstrated the highest prediction accuracy 
(R² = 0.922 for rut depth), but it was sensitive to imbalanced 
data, which affected its generalization. GB and SVR provided 
more robust predictions across diverse datasets but required 
more extensive computational resources to minimize bias 
and ensure balanced predictions [9]. 

Tiwari et al. (2022) applied ANN with various activation 
functions (Exponential Linear Unit, ELU, and Hyperbolic 
Tangent, TanH) to predict the mechanical properties of 
asphalt mixes with industrial waste fillers. The input variables 
included air void content, filler type, and filler content, while 
the output variables included Marshall stability and indirect 
tensile strength. The TanH activation function performed 
better, achieving R² = 0.9967, though it required higher 
computational power due to increased complexity in 
capturing nonlinear relationships [28]. 

In another study, Tiwari et al. (2023) applied ANN with 
different activation functions, including TanH and ELU, to 
predict mechanical properties of asphalt mixtures with silica 
fume fillers. The TanH-SNN model achieved the highest 
accuracy (R² = 0.9988), outperforming other models in terms 
of capturing nonlinear relationships between inputs and 
outputs, though the increased complexity required more 
computational power [29]. 

Ali et al. (2021) used XGBoost to predict dynamic 
modulus in asphalt mixtures, outperforming traditional 
models such as the Witczak and Hirsch models (R² = 0.961). 
XGBoost’s strength lay in its ability to handle complex 
nonlinear relationships and avoid overfitting, though its 
computational demands limited its practicality in smaller-
scale applications. ANN models, while competitive, lacked 
interpretability and required more extensive resources to 
train [30]. 

Mirzaiyanrajeh et al. (2022) used ANN, Self-Validated 
Ensemble Modeling (SVEM), and Augmented Full Quadratic 
Model (AFQM) to predict low-temperature fracture energy of 
asphalt mixtures. ANN provided the highest accuracy but 
was computationally expensive, whereas SVEM, although 
slightly less accurate, was more efficient with small datasets, 
striking a balance between accuracy and computational 
efficiency [31]. 

Liu et al. (2023) utilized recurrent neural networks (RNN), 
long short-term memory (LSTM), and gated recurrent units 
(GRU) for time series modeling to predict rutting depth. Input 
variables included historical rutting depth, temperature, and 
pavement properties. GRU outperformed both RNN and 

LSTM, achieving an R² value of 0.90. GRU's ability to retain 
long-term memory with fewer parameters made it more 
computationally efficient, though LSTM still performed well in 
capturing seasonal trends in the data [32]. 

Finally, Al-Sabaeei et al. (2023) employed XGBoost and 
Random Forest Regression (RFR) to predict mixing and 
compaction temperatures for bio-modified asphalt using 
crude palm oil (CPO) and tire pyrolysis oil (TPO) as 
modifiers. XGBoost outperformed RFR in predicting shear 
viscosity, but RFR demonstrated better accuracy for 
temperature predictions, with R² values of 0.96583 for mixing 
temperature and 0.96281 for compaction temperature. Both 
models excelled in accuracy but were limited by their high 
computational requirements [33]. 
 
2.1 Summary of methods 
 

Table 1 provides a detailed summary of studies focusing 
on machine learning approaches and their applications in 
asphalt mixture performance prediction. Across the studies 
reviewed, several machine learning methods were employed 
to predict key asphalt mixture performance metrics, including 
dynamic modulus, rut depth, Marshall stability, International 
Roughness Index (IRI), and crack resistance. Each method 
presented unique strengths and weaknesses, as highlighted 
below: 

• Artificial Neural Networks (ANNs): Frequently used for 
predicting complex performance metrics, ANNs 
demonstrated strong accuracy in predicting properties such 
as Marshall stability, dynamic modulus, and fracture energy. 
ANNs excel in capturing intricate nonlinear relationships 
between variables, especially when paired with activation 
functions like TanH and ReLU. However, their major 
drawbacks include computational expense, the need for 
large datasets, and a propensity for overfitting without careful 
tuning of hyperparameters. In studies by Upadhya et al. 
(2022) Tiwari et al. (2022), and Khorshidi et al. (2023), ANNs 
and DNNs performed well but required significant 
computational resources and hyperparameter optimization 
[5], [6], [28]. 

• Support Vector Machines (SVMs): SVM models, 
particularly when paired with kernel methods like the 
Pearson Universal Kernel (PUK), were highly accurate in 
predicting metrics such as strength and Marshall stability. 
SVMs excel in handling nonlinear relationships and are 
particularly effective with small- to medium-sized datasets. 
However, as seen in studies like Fan et al. (2024) and 
Upadhya et al. (2022), SVMs require careful kernel tuning 
and can struggle with large datasets due to high 
computational costs and sensitivity to hyperparameters [2], 
[6]. 

• Gradient Boosting (GB) and XGBoost: These ensemble 
learning methods consistently outperformed other models in 
predicting dynamic modulus, rut depth, and other asphalt 
mixture properties. XGBoost, in particular, has proven to be 
highly effective at managing nonlinear interactions, 
regularizing models to avoid overfitting, and delivering 
superior prediction accuracy. This method was widely used 
in studies such as Liu et al. (2023) and Ali et al. (2021), where 
XGBoost delivered top results in predicting dynamic modulus 
and shear viscosity [1], [30]. However, XGBoost requires 
significant computational power and tuning, which can limit 
its practicality in certain applications. 

• Gaussian Process Regression (GPR): GPR excels at 
modeling complex nonlinear relationships and provides both 
predictions and uncertainty estimates. It is particularly 
effective for small to medium datasets but can be 
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computationally demanding and requires careful tuning of 
hyperparameters. In studies by Khorshidi et al. (2023), GPR 
outperformed other models in predicting the optimal 
combinations of alternative materials in asphalt mixtures, 
accurately balancing cracking resistance, rutting resistance, 
and moisture damage, though its high computational 
requirements were noted [23]. 

• Random Forest (RF): While RF models provided solid 
predictions, particularly in larger datasets, they generally 
lagged behind ensemble methods like Gradient Boosting in 
terms of accuracy. Studies such as Liu et al. (2022) and 
Rahman et al. (2021) showed that RF models, though 
effective in certain scenarios, were prone to higher error 
rates when handling complex datasets and large feature 
spaces [9], [26]. RF's strength lies in its ability to handle 
overfitting better than simpler models, but it can 
underperform when compared to more advanced techniques 
like XGBoost. 

• Gene Expression Programming (GEP): GEP, as 
applied by Majidifard et al. (2020), provided interpretable 
models that elucidate the relationships between input 
variables and performance metrics, such as rut depth. This 
transparency made GEP attractive for engineers who require 

interpretable results [27]. However, GEP required precise 
parameter tuning, making it less effective for highly complex 
datasets or situations where rapid model development was 
needed. 

• Autoencoders (AE) and Dimensionality Reduction 
Techniques: In Liu et al. (2022), the combination of 
Autoencoders (AE) with Gaussian Process Regression 
(GPR) showed how dimensionality reduction can improve 
machine learning models by reducing input noise and 
computational complexity. AE-GPR outperformed models 
like SVR and RF by effectively managing high-dimensional 
data in predicting IRI, proving that reducing input space can 
lead to improved accuracy and efficiency [26]. 

• Self-Validated Ensemble Modeling (SVEM): While less 
commonly used, SVEM provided a balanced approach 
between accuracy and computational efficiency, especially 
for smaller datasets. In Mirzaiyanrajeh et al. (2023), SVEM 
was found to be more practical than ANN in predicting 
fracture energy for smaller datasets, offering reliable results 
with fewer computational resources [31]. However, its 
predictive capacity could be slightly lower than ANN in more 
complex scenarios. 

 
Table 1. Summary of machine learning applications in predicting asphalt mixture performance: overview of data collection 

methods, model types, and justifications for model selection across studies 
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2.2 Overall trends 
 

The studies reviewed consistently demonstrated that 
ensemble methods such as Gradient Boosting and XGBoost 
were the most effective in terms of both accuracy and 
robustness. These models were particularly useful in 
handling large datasets and complex, nonlinear relationships 
within asphalt mixture data. However, their high 
computational costs and complexity in hyperparameter 
tuning limited their practicality in some real-world scenarios. 
On the other hand, simpler models like SVM and ANN, while 
still effective in certain cases, struggled with overfitting and 
computational demands when faced with large, high-
dimensional datasets. GPR also proved highly effective, 
particularly for small to medium datasets, though it required 
substantial computational resources and careful tuning. 
Dimensionality reduction techniques such as Autoencoders 
(AE) and Principal Component Analysis (PCA) helped 
mitigate these issues by streamlining input features, 
improving the efficiency and accuracy of models like GPR 
and SVR. 

Finally, interpretability remains a key consideration, with 
methods like Gene Expression Programming (GEP) offering 
more transparent models than black-box approaches like 
ANN and XGBoost. This interpretability can be critical for 
engineers looking to understand the underlying relationships 
between variables and performance outcomes. 
3 Concrete property prediction and structural 

performance 

Machine learning (ML) models have become an essential 
tool in predicting concrete properties and optimizing 
structural performance, addressing the limitations of 
traditional empirical methods. This section explores various 
machine learning techniques applied to predict key concrete 
properties such as compressive strength, tensile strength, 
modulus of elasticity, and fracture energy. These studies 
demonstrate the advantages and disadvantages of different 
ML approaches in terms of prediction accuracy, 
computational complexity, and model interpretability. 

Song et al. (2022) applied machine learning models such 
as Artificial Neural Networks (ANN), Support Vector 
Machines (SVM), Decision Trees (DT), Random Forest (RF), 
and Gradient Boosted Regression Trees (GBRT) to optimize 
cementitious material mixtures. Input variables included 
water content, cement content, supplementary cementitious 

materials (SCMs), and aggregate content, while the outputs 
were uniaxial compressive strength (UCS) and durability. 
ANN excelled in capturing nonlinear relationships but 
required significant computational resources and careful 
tuning to avoid local minima. SVM performed well in 
generalization but was highly sensitive to hyperparameter 
tuning, and RF improved accuracy by reducing variance, 
though it came with higher computational costs. GBRT 
offered the highest accuracy in UCS prediction but increased 
computational complexity. Metaheuristic algorithms such as 
Particle Swarm Optimization (PSO) and Genetic Algorithms 
(GA) were used to optimize the model parameters and 
enhance the performance of the ML models [34]. 

Hafez et al. (2022) developed a machine learning 
regression model, Pre-bcc, to predict slump, compressive 
strength, carbonation, and chloride ingress resistance for 
blended cement concrete (BCC) using supplementary 
cementitious materials (SCMs) such as fly ash, ground 
granulated blast-furnace slag, silica fume, lime powder, and 
calcined clay. Input variables included SCM types and 
proportions. ANN, RF, and SVM models were tested, with 
RF showing better accuracy and interpretability, though 
computationally intense. SVM required careful tuning but 
handled generalization well. Pre-bcc offers high prediction 
accuracy for slump and strength but is computationally 
complex when handling multiple SCMs, improving the 
understanding of SCM effects in BCC [16]. 

Hafez et al. (2023) then introduced Opt-bcc, an 
optimization tool using Genetic Algorithms (GA) with Pre-bcc 
to optimize sustainability scores of blended cement concrete 
mixes. Input variables included various SCM types and 
proportions, while output variables were strength, slump, and 
durability indices. GA effectively minimized environmental 
and cost impacts but required complex tuning. Opt-bcc 
achieved significant cost and environmental reductions 
compared to existing models, though functional parameter 
prediction models were nonlinear, demanding higher 
computational resources. This study highlighted GA’s 
potential in eco-friendly concrete optimization while 
balancing functional and economic criteria [35]. 

Pfeiffer et al. (2024) utilized an amortized Gaussian 
Process (GP) model integrated with an inverse optimization 
framework to design concrete mixes minimizing climate 
impact and cost. Input variables were SCM proportions, 
water/cementitious material ratio, and aggregate 
composition, while the output variable was compressive 
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strength at 28 days. The GP model provided mean 
predictions and uncertainty estimates, making it more robust 
than traditional models like ANN and RF, which lack 
uncertainty measures. The GP's flexibility for industrial-scale 
datasets added accuracy, but computational demands were 
significant. This study demonstrated GP's effectiveness for 
mix design, balancing environmental and economic 
objectives with structural performance requirements [36]. 
Moein et al. (2023) reviewed several machine learning and 
deep learning models for predicting concrete properties, 
including SVM, ANN, Random Forest, and Extreme Learning 
Machines (ELM). The input variables included cement 
content, aggregate composition, water-cement ratio, and 
curing age. ANN showed high accuracy but was prone to 
overfitting without proper tuning, while SVM was more 
effective for smaller datasets but struggled with high-
dimensional data. ELM provided faster training times 
compared to ANN but at the cost of prediction accuracy. 
Genetic Algorithms (GA) were used to enhance model 
optimization when combined with other ML models. Random 
Forest and ANN were identified as the most reliable models 
for concrete property prediction, with RF offering better 
interpretability and ANN excelling in predictive performance 
[11]. 

Yu et al. (2018) compared an Enhanced Cat Swarm 
Optimization (ECSO)-optimized SVM model with traditional 
models like ANN and Extreme Learning Machines (ELM) for 
predicting the compressive strength of high-performance 
concrete (HPC). Input variables included water content, 
cement content, and supplementary materials. The ECSO-
optimized SVM model achieved superior accuracy (R² = 
0.9526), outperforming ANN (R² = 0.8716). While SVM 
required significant parameter tuning, ECSO improved the 
convergence rate and avoided local minima, making it more 
efficient. ANN, though effective, suffered from overfitting and 
was computationally expensive [37]. 

Pham et al. (2016) used a Least Squares Support Vector 
Regression (LS-SVR) model optimized by the Firefly 
Algorithm (FA) to predict the compressive strength of high-
performance concrete (HPC). Input variables included 
cement, aggregates, and curing conditions. FA-LS-SVR 
achieved the highest accuracy (R² = 0.89) compared to ANN 
and traditional SVM models. The optimized SVM model 
outperformed ANN by providing better generalization and 
reducing prediction errors. However, the model required 
careful tuning of parameters like penalty factors, making it 
computationally demanding [38]. 

Yaseen et al. (2018) used Extreme Learning Machines 
(ELM) to predict the compressive strength of lightweight 
foamed concrete, outperforming other models like 
Multivariate Adaptive Regression Splines (MARS) and M5 
Tree. Input variables included cement content, oven dry 
density, and foam volume. ELM achieved an R² of 0.875, 
making it the fastest model in terms of training speed, though 
it was less accurate for highly complex data. MARS and M5 
Tree provided reasonable accuracy but failed to capture 
complex relationships, while ELM's fast training and 
simplicity made it an efficient option for lightweight concrete 
strength prediction [39]. 

Omran et al. (2016) compared Gaussian Process 
Regression (GPR), Multilayer Perceptron (MLP), and 
Support Vector Machines (SVM) for predicting the 
compressive strength of environmentally friendly concrete. 
GPR outperformed the other models, achieving the highest 
accuracy (R² = 0.9842) and offering better generalization 
through its probabilistic approach. However, GPR was 
computationally intensive. Ensemble methods like Additive 

Regression and Bagging with GPR also provided high 
accuracy, while SVM and MLP required extensive parameter 
tuning to avoid overfitting. GPR was highlighted for its 
balance between accuracy and computational efficiency, 
making it a strong choice for concrete strength prediction 
[40]. 

Bonifácio et al. (2019) applied Support Vector 
Regression (SVR) and the Finite Element Method (FEM) to 
predict the compressive strength and Young's modulus of 
lightweight aggregate concrete (LWAC). SVR outperformed 
FEM slightly, achieving a lower deviation from experimental 
results (5.46% for compressive strength), with the key 
advantage being SVR's reusability with new data and speed. 
FEM, although slightly less accurate, required fewer inputs 
and was advantageous in cases where experimental results 
were scarce. SVR required a larger training dataset, making 
it more computationally intensive [10]. 

Tanyildizi (2018) applied ANN and SVM to predict the 
strength properties of carbon fiber-reinforced lightweight 
concrete exposed to high temperatures. Input variables 
included silica fume, carbon fiber content, and temperature. 
ANN achieved the highest accuracy (R² = 0.9902 for 
compressive strength), outperforming SVM (R² = 0.9701). 
While ANN offered superior predictive accuracy, it required 
more computational resources and careful optimization of 
hidden neurons and learning algorithms. SVM was simpler 
to use but less accurate, making it a better choice for smaller 
datasets [15]. 

Mozumder et al. (2017) used Support Vector Regression 
(SVR) to predict the uniaxial compressive strength of fiber-
reinforced polymer (FRP) confined concrete, achieving 
higher accuracy (R² = 0.9832 for CFRP) than ANN models 
and empirical methods. SVR's ability to avoid local minima 
and provide better generalization made it a more reliable 
method, though it required substantial computational effort 
and parameter tuning compared to ANN, which suffered from 
slower convergence and higher prediction errors [8]. 

Keshtegar et al. (2019) applied a hybrid RSM-SVR model 
to predict the shear strength of steel fiber-reinforced concrete 
beams (SFRCBs). The hybrid model outperformed ANN and 
other traditional methods, achieving an R² of 0.9508, thanks 
to its ability to capture nonlinear relationships and cross-
correlations between input variables. Although the hybrid 
model required significant computational power, it proved to 
be the most accurate for predicting SFRCBs shear strength, 
demonstrating the advantage of combining multiple 
modeling approaches [7]. 

Aiyer et al. (2014) compared Least Square Support 
Vector Machines (LSSVM) and Relevance Vector Machines 
(RVM) for predicting the compressive strength of self-
compacting concrete. RVM outperformed LSSVM and ANN, 
offering additional benefits such as handling variance and 
uncertainty. While LSSVM was accurate, RVM's ability to 
calculate variance made it a better tool for assessing 
uncertainty in predictions, especially in civil engineering 
applications [41]. 

Yuvaraj et al. (2013) applied SVR to predict fracture 
characteristics, such as fracture energy and failure load, of 
high-strength and ultra-high-strength concrete beams. The 
SVR model achieved high prediction accuracy (R² close to 1 
for all parameters), outperforming traditional empirical 
models. The SVR model's strength lay in its ability to handle 
nonlinear relationships even with limited datasets, though it 
required careful parameter tuning to optimize its predictive 
performance [42]. 

Yan & Shi (2010) used SVM to predict the elastic 
modulus of normal and high-strength concrete, 
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outperforming traditional empirical models. SVM achieved 
better accuracy with fewer parameters compared to 
empirical models, though it required careful tuning of kernel 
parameters. ANN, while effective, was more complex to tune 
and prone to local minima, making SVM the preferred model 
for this application [43]. 

Nazari & Sanjayan (2015) optimized SVM using Genetic 
Algorithm (GA), Particle Swarm Optimization (PSO), and 
other metaheuristic algorithms to predict the compressive 
strength of geopolymer concrete. The hybrid models, 
particularly the ICOA-SVM model, achieved superior 
prediction accuracy (R² = 0.8993), though they were 
computationally intensive due to the optimization process 
[44]. 

Deng et al. (2018) used Convolutional Neural Networks 
(CNN) to predict the compressive strength of recycled 
aggregate concrete (RAC), outperforming both 
Backpropagation Neural Networks (BPNN) and SVM in 
terms of accuracy and efficiency. CNN’s advantage was its 
ability to automatically extract deep features from input data 
without requiring manual preprocessing, though it was more 
computationally intensive [45]. 

Kaloop et al. (2019) compared LSSVM, ANN, and 
regression models to predict the resilient modulus (Mr) of 
recycled concrete aggregate blends. LSSVM achieved the 
highest accuracy (R² = 0.982), outperforming both ANN and 
regression models, particularly with smaller datasets, though 
it required careful tuning of regularization parameters [46]. 
Cheng et al. (2014) applied the Genetic Weighted Pyramid 
Operation Tree (GWPOT) to predict the compressive 
strength of high-performance concrete, outperforming ANN 
and SVM models. GWPOT provided interpretable 
mathematical formulas, offering better transparency, though 
it required higher computational resources for optimization 
[47]. 

Zhang et al. (2019) used Random Forest (RF) optimized 
with Beetle Antennae Search (BAS) to predict the uniaxial 
compressive strength of lightweight self-compacting 
concrete. BAS improved the hyperparameter tuning process, 
resulting in an R² value of 0.97, significantly outperforming 
traditional regression models. However, the computational 
complexity was higher due to the optimization process [48]. 
 
3.1 Summary of methods 
 

Table 2 provides a detailed summary of studies focusing 
on machine learning approaches and their applications in 
predicting concrete properties. In the reviewed studies, 
machine learning techniques were applied to predict 
concrete properties such as compressive strength, tensile 
strength, modulus of elasticity, and fracture energy, offering 
improvements in accuracy and efficiency over traditional 
empirical methods. The following methods were highlighted 
for their strengths and weaknesses: 

• Artificial Neural Networks (ANNs): ANNs were 
frequently applied in predicting nonlinear relationships in 
concrete properties, such as compressive strength and 
fracture energy. Studies like Tanyildizi (2018) and Song et al. 
(2022) demonstrated that ANNs performed well in capturing 
complex data patterns [15], [34]. However, ANNs often faced 
challenges such as overfitting and the need for large 
datasets, which made them computationally expensive. Yu 
et al. (2018) and Mozumder et al. (2017) further emphasized 
that proper tuning of hyperparameters, such as the number 
of hidden neurons and learning rates, is crucial to achieving 
high accuracy without overfitting [8], [37]. 

• Support Vector Machines (SVMs): SVMs were 
consistently highlighted as strong performers, especially 
when dealing with smaller datasets, as shown in Yu et al. 
(2018), Mozumder et al. (2017), and Yan & Shi (2010) [8], 
[37], [43]. SVM models excelled at predicting compressive 
strength, fracture characteristics, and elastic modulus, 
particularly when optimized using techniques such as 
Enhanced Cat Swarm Optimization (ECSO) and the Firefly 
Algorithm (FA) [37], [38]. These optimizations significantly 
improved convergence and accuracy. However, SVMs can 
be computationally intensive and sensitive to 
hyperparameter tuning, requiring careful selection of kernel 
functions. 

• Random Forest (RF): Random Forest models, applied 
in studies such as Song et al. (2022) and Zhang et al. (2019), 
were particularly effective in handling complex, high-
dimensional datasets [34], [48]. RF’s ability to reduce 
overfitting by averaging multiple decision trees made it a 
popular choice for predicting properties like compressive 
strength. Despite its robustness, RF models are 
computationally demanding and require tuning of 
hyperparameters such as the number of trees and depth to 
achieve optimal results. 

• Gradient Boosting and Boosted Regression Trees 
(GBRT): Gradient Boosting models were often the most 
accurate in predicting concrete properties, particularly in 
Song et al. (2022) where they excelled at predicting uniaxial 
compressive strength (UCS) [34]. These models effectively 
captured nonlinear relationships between variables but came 
at a high computational cost due to their iterative learning 
process. Gradient Boosting methods like XGBoost are 
powerful but require significant tuning to prevent overfitting, 
especially when dealing with large datasets. 

• Extreme Learning Machines (ELM): Yaseen et al. 
(2018) demonstrated that ELM models provided a fast and 
computationally efficient method for predicting concrete 
properties, particularly lightweight foamed concrete [39]. 
ELM's ability to train quickly made it useful for simpler 
datasets, but it lacked the accuracy of more complex models 
like RF and Gradient Boosting when dealing with high-
dimensional or intricate data. 

• Gaussian Process Regression (GPR): Omran et al. 
(2016) highlighted that GPR was highly accurate in 
predicting concrete compressive strength [40]. GPR’s 
probabilistic approach offered the added benefit of 
estimating uncertainty, which made it suitable for cases 
where confidence in the predictions was critical. However, 
GPR’s computational demands increase significantly with 
larger datasets, limiting its practicality for large-scale 
applications. 

• Least Squares Support Vector Machines (LSSVM): 
Enhanced versions of SVM, such as LSSVM, were applied 
in Pham et al. (2016) and Kaloop et al. (2019) to improve 
predictive performance and computational efficiency [38], 
[46]. LSSVM, optimized by metaheuristic algorithms like the 
Firefly Algorithm (FA), outperformed standard SVM and ANN 
models, especially in smaller datasets. However, LSSVM still 
required careful tuning of parameters like the regularization 
factor to achieve high accuracy. 

• Convolutional Neural Networks (CNNs): In Deng et al. 
(2018), CNNs were shown to outperform traditional models 
like SVM and Backpropagation Neural Networks (BPNN) 
when predicting compressive strength in recycled aggregate 
concrete [45]. CNNs excelled at automatically extracting 
deep features from raw data, which improved accuracy and 
reduced the need for manual feature engineering. However, 
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CNNs are computationally intensive and require large 
datasets to fully leverage their potential. 

• Hybrid Models (e.g., RSM-SVR, ANN-MOGWO): 
Hybrid models combining machine learning algorithms with 
optimization techniques, such as Keshtegar et al. (2019)’s 
RSM-SVR model, showed superior performance in 
predicting complex properties like shear strength [7]. These 

models combine the strengths of multiple techniques, 
improving accuracy by capturing nonlinearities and complex 
relationships between variables. However, hybrid models 
are computationally expensive due to the complexity of 
integrating multiple approaches. 

 
Table 2. Summary of Machine Learning Applications in Predicting Concrete Properties: Overview of Data Collection Methods, 

Model Types, and Justifications for Model Selection Across Studies 
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3.2 Overall trends 
 

The studies consistently demonstrated that ensemble 
methods like Random Forest and Gradient Boosting 
delivered the best performance in predicting concrete 
properties, excelling in handling high-dimensional datasets 
and capturing complex nonlinear relationships. However, 
these methods were computationally demanding and 
required careful tuning. 

Support Vector Machines (SVMs), particularly when 
enhanced with optimization algorithms, were effective for 
smaller datasets but required significant computational 
resources and careful parameter tuning. Artificial Neural 
Networks (ANNs) were highly accurate in capturing complex 
relationships but often suffered from overfitting and required 
large datasets and computational resources. 

Hybrid models, such as RSM-SVR and ANN-MOGWO, 
offered the highest accuracy by combining the strengths of 
multiple approaches, but their complexity and computational 
requirements made them more suitable for research 
applications. 

Convolutional Neural Networks (CNNs) and Gaussian 
Process Regression (GPR) were also strong performers, 
with CNNs excelling at feature extraction and GPR providing 
uncertainty estimates. However, both models required 
substantial computational power. 

In summary, ensemble methods and hybrid models 
proved to be the most accurate, while SVMs and ANNs were 
useful but required extensive tuning. The model choice 
ultimately depended on the dataset size, complexity, and 
available computational resources. 

4 Classification and pattern recognition in pavement 
systems 

Machine learning models, particularly unsupervised 
learning methods, have been instrumental in classifying 
pavement conditions, detecting cracks, and identifying 
patterns that are crucial for effective pavement management. 
Below is a detailed analysis of several studies using 
unsupervised models to address pavement-related 
problems. 

Shao et al. (2022) applied K-means clustering to classify 
pavement performance patterns based on long-term 
Pavement Condition Index (PCI) and Riding Quality Index 
(RQI) data. Their model classified pavement performance 
into five distinct patterns, facilitating the evaluation of road 
maintenance strategies. The key strengths of K-means were 
its simplicity and ability to process large datasets effectively. 
However, its requirement to predefine the number of clusters 
and its sensitivity to data with varying densities or missing 
values were major limitations, suggesting the need for more 
adaptive models to achieve greater accuracy [49]. 

Mathavan et al. (2014) used a Self-Organizing Map 
(SOM), an unsupervised neural network, to classify doweled 
concrete pavement joints based on Falling Weight 
Deflectometer (FWD) data. Input parameters included load 
transfer efficiency (LTE), void intercepts (VI), and absolute 
deflection (D). SOM classified the joints into three categories: 
good, marginal, and poor. The model achieved an accuracy 
of 65-70%, improving to 87.5% when only LTE and D were 
used, demonstrating the potential to reduce human 
inconsistencies in manual assessments. The pros of SOM 
include its ability to capture complex patterns and automate 
classification, though its slow training process and sensitivity 
to unbalanced data were notable drawbacks [50]. 

Mubashshira et al. (2020) employed K-means clustering 
to detect road surface cracks by segmenting 2D road surface 
images. After preprocessing to reduce noise, K-means was 
used for image segmentation, followed by Otsu thresholding 
and morphological operations to refine the detected cracks. 
The model achieved an average detection accuracy of 
97.75%, outperforming traditional edge detection methods 
by reducing false negatives. While K-means clustering was 
effective in handling noise and irregularities, its efficiency 
was limited by the reliance on post-processing steps, 
particularly for large-scale real-time applications [51]. 

Li et al. (2021) proposed a novel model that fused 
Convolutional Neural Networks (CNN) with K-means 
clustering for road crack classification. The input data 
consisted of crack images collected via automated vehicles 
and smartphones, and the model classified crack types—
transverse, longitudinal, and alligator cracks—with 
accuracies of 80.6%, 79.2%, and 91.3%, respectively. The 
fusion of CNN and K-means allowed for iterative refinement 
of clustering assignments, reducing the need for manually 
labeled data. However, the model faced challenges due to 
its high computational cost during training and the need for 
extensive optimization [52]. 

Golmohammadi et al. (2024) combined PCA and 
DBSCAN for anomaly detection in pavement health 
monitoring using Fiber Bragg Grating (FBG) sensors. The 
system processed strain and temperature data to detect 
structural anomalies in pavement layers. DBSCAN 
effectively distinguished between normal and abnormal 
patterns without labeled data, demonstrating high accuracy 
in anomaly detection. The system, however, was sensitive to 
sensor placement and required considerable computational 
resources for continuous monitoring [53]. 

Abdelmawla et al. (2021) utilized PCA and K-means 
clustering to classify pavement cracks from 1,125 road 
surface images. The input images were preprocessed with 
edge detection and morphological operations, followed by 
dimensionality reduction using PCA and clustering using K-
means. The study identified three clusters: multi-directional 
cracks, longitudinal cracks, and images without cracks. PCA 
reduced dimensionality, improving computational efficiency, 
but struggled with nonlinear relationships in the data. K-
means effectively classified the cracks, although it was 
sensitive to initial cluster assignments [54]. 

Dong et al. (2021) classified climatic regions for 
pavement systems using PCA and K-means clustering. Input 
data from the Long-Term Pavement Performance (LTPP) 
database included 16 climate variables. Four primary 
clusters—wet no freeze, dry no freeze, dry freeze, and snow 
freeze—were identified, and results from Artificial Neural 
Networks (ANN) and Fisher’s linear discriminant analysis 
were compared. ANN achieved higher prediction accuracy 
than discriminant analysis, though ANN required more tuning 
and computational power. K-means clustering proved 
efficient for handling large datasets, though the need to 
predefine clusters remained a limitation [55]. 

Shi et al. (2024) applied K-means clustering to analyze 
Acoustic Emission (AE) data from epoxy asphalt mixtures 
with varying crumb rubber (CR) content. Four damage 
modes were identified: cohesive cracking, aggregate-asphalt 
interface cracking, aggregate fracture, and aggregate 
friction. The model effectively classified AE signals and 
demonstrated that 4% CR content was optimal for balancing 
toughness and strength. However, the model’s sensitivity to 
initial cluster selection and overlapping clusters presented 
challenges, especially when dealing with highly correlated 
data [56]. 
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Akhtar et al. (2020) implemented a parallel K-means 
clustering model to assess adhesion failure in Warm Mix 
Asphalt (WMA) through high-resolution image processing. 
The model reduced execution time by 30-46% compared to 
sequential K-means clustering, improving the detection of 
adhesion failure. Although the parallel model handled large 
image datasets more efficiently, its complexity and sensitivity 
to initial cluster centers posed challenges during 
the implementation [57]. 

Sahari Moghadam et al. used K-means clustering in 
conjunction with k-nearest neighbors (KNN) and support 
vector machines (SVM) to classify asphalt coating conditions 
in loose mixtures. The input images from static immersion 
tests were segmented using K-means, followed by 
classification using KNN and SVM. The model improved 
classification accuracy by reducing human bias, though it 
was sensitive to image quality and relied on robust 
preprocessing steps to ensure accuracy [58]. 
 
4.1 Summary of methods 
 

Table 3 provides a detailed summary of studies focusing 
on machine learning approaches and their applications in 
classification and pattern recognition for pavement systems. 
Unsupervised learning techniques, particularly clustering 
and pattern recognition methods, have been extensively 
applied in pavement system classification and anomaly 
detection. Here’s an overview of the key methods: 

• K-means Clustering: Widely used for classifying 
pavement performance patterns, crack detection, and 
assessing asphalt coating conditions (Shao et al., 2022; 
Akhtar et al., 2020). Its simplicity and efficiency in handling 
large datasets are advantageous, but it often struggles with 
predefined cluster requirements and sensitivity to initial 
conditions [49], [57]. 

• Principal Component Analysis (PCA): Commonly 
paired with K-means for dimensionality reduction, PCA 
improved computational efficiency in multi-dimensional data 
applications like crack classification and climate region 
analysis (Abdelmawla et al., 2021; Dong et al., 2021) [54], 
[55]. However, PCA's linearity limits its ability to capture 
complex relationships. 

• Self-Organizing Maps (SOM): Used for classifying 
pavement joint conditions (Mathavan et al., 2014). SOM 
excels at handling high-dimensional data but has a slow 
training process and reduced accuracy with unbalanced 
datasets [50]. 

• Convolutional Neural Networks (CNN): When 
combined with K-means, CNN was effective for road crack 
classification, automating feature extraction and improving 
classification performance (Li et al., 2021). The downside is 
its high computational cost and complexity in optimization 
[52]. 

• DBSCAN: Applied for anomaly detection in pavement 
monitoring systems (Golmohammadi et al., 2024), DBSCAN 
is effective in handling unlabelled data, though sensitive to 
sensor placement and computationally intensive in 
continuous monitoring [53]. 

• Parallel K-means Clustering: Enhanced efficiency in 
large-scale image processing tasks by reducing execution 
time (Akhtar et al., 2020). However, its implementation is 
complex, particularly when managing communication 
between computing nodes [57]. 

• K-means with Supervised Classifiers (KNN, SVM): 
Combining K-means with KNN or SVM improved accuracy in 
tasks like asphalt coating assessment but required high-
quality image data for optimal performance (Sahari 
Moghadam et al.) [58]. 

 
Table 3. Summary of machine learning applications in classification and pattern recognition in pavement systems: overview 

of data collection methods, model types, and justifications for model selection across studies 
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4.2 Overall trends 
 

K-means clustering emerged as a dominant method for 
its simplicity and effectiveness in pavement performance 
analysis, but it often required careful parameter tuning and 
was limited by predefined clusters. PCA was valuable for 
dimensionality reduction but struggled with nonlinearity. 
SOM and DBSCAN offered robust classification and 
anomaly detection in high-dimensional and sensor data, 
respectively, though at the cost of computational efficiency. 

The combination of CNN with K-means showed promise 
in handling complex, image-based data, albeit with high 

computational demands. Parallel implementations, like 
Parallel K-means, improved processing times but introduced 
complexity in deployment. Hybrid models combining 
unsupervised and supervised techniques, such as K-means 
with KNN and SVM, offered higher accuracy but depended 
on data quality and preprocessing efforts. 

Table 4 below provides a concise summary of the 
machine learning methods applied across various studies in 
asphalt mixture performance, concrete property prediction, 
and pavement classification. It outlines the key advantages 
and disadvantages of each method, complementing the 
trends discussed in the preceding sections. 

 

https://github.com/juhuyan/CrackDataset_DL_HY
https://github.com/juhuyan/CrackDataset_DL_HY
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Table 4. Summary of machine learning methods, advantages, and disadvantages across pavement and concrete 
applications 

Method 
Category 

Advantages Disadvantages 
A C P 

Artificial Neural Networks 
(ANNs) 

× ×  
Captures complex nonlinear relationships 
High accuracy in predicting performance 

metrics 

Computationally intensive 
Prone to overfitting 

Requires large datasets 

Support Vector Machines 
(SVMs) 

× ×  
Handles nonlinear relationships well 

Effective with smaller datasets 

Sensitive to parameter tuning 
Computationally expensive for 

large datasets 

Gradient 
Boosting/XGBoost 

× ×  
High accuracy and handles complex 

nonlinear relationships 
Regularization avoids overfitting 

Requires significant computational 
power 

Complex tuning required 

Random Forest (RF) × ×  
Good interpretability and robust handling 

of overfitting 

Less accurate compared to 
ensemble methods 

Computationally expensive 

Gaussian Process 
Regression (GPR) 

× ×  
Provides accurate predictions and 

uncertainty estimates. Handles complex 
nonlinear relationships well 

Computationally demanding. 
Requires careful tuning of 

hyperparameters 

Gene Expression 
Programming (GEP) 

×   Offers transparent, interpretable models 
Requires precise tuning 

Limited for large and complex 
datasets 

Hybrid Models (e.g., SVM 
with optimization) 

× ×  
Optimizes parameter selection 

Improves prediction accuracy and model 
convergence 

Computationally intensive 
Requires additional resources for 

optimization algorithms 

Self-Organizing Maps 
(SOM) 

  × 

Captures complex patterns in high-
dimensional data 

Reduces inconsistencies in manual 
classification 

Slow training process 
Struggles with unbalanced 

datasets 

DBSCAN   × 
Effective in anomaly detection with 

unlabelled data 
Handles noisy data 

Sensitive to sensor placement 
Computationally intensive for 

continuous monitoring 

Convolutional Neural 
Networks (CNN) 

  × 

Automatically extracts deep features from 
images 

Highly effective for image-based crack 
detection and classification 

High computational cost 
Requires extensive optimization 
and tuning of hyperparameters 

Parallel K-means   × 
Reduces execution time by 30-46% 

Efficient for large-scale image processing 

Complex implementation 
Communication overhead 

between nodes 

K-means Clustering   × 
Simple and efficient for large datasets 

Effective in crack detection and pavement 
classification 

Requires predefined cluster 
number 

Sensitive to initial conditions and 
varying densities 

Principal Component 
Analysis (PCA) 

  × 
Reduces dimensionality, improving 

computational efficiency 
Limited by linearity, struggles with 

complex relationships 

Note: A is Asphalt Mixture Performance and Optimization, C is Concrete Property Prediction and Structural Performance, P is 
Classification and Pattern Recognition in Pavement Systems 

 
 
5 Conclusion 

This literature review examines the application of 
machine learning techniques in material testing across three 
key areas: asphalt mixture performance, concrete property 
prediction, and classification and pattern recognition in 
pavement systems. The studies demonstrate the significant 
potential of machine learning to improve prediction accuracy, 
optimize material design, and reduce reliance on costly 
experimental testing. 

Across all categories, models such as Artificial Neural 
Networks (ANNs), Support Vector Machines (SVMs), 
Random Forests (RF), Gradient Boosting (GB), Gaussian 
Process Regression (GPR), and Convolutional Neural 
Networks (CNN) show strong predictive capabilities for 
complex material behaviors. While ANN and SVM models 

are effective for smaller datasets, ensemble methods like GB 
and RF excel in handling larger, nonlinear data sets but are 
computationally expensive. GPR stands out for its ability to 
model complex relationships and provide uncertainty 
estimates, particularly in small to medium datasets, though it 
requires extensive tuning and computational power. Deep 
learning methods, such as CNN, extract deep features 
without manual preprocessing but require significant 
computational resources. 

In classification and pattern recognition, unsupervised 
models, especially K-means clustering, are frequently 
applied for pavement condition classification and crack 
detection. Principal Component Analysis (PCA) is often used 
for dimensionality reduction, improving model efficiency but 
facing challenges with nonlinearity. Advanced techniques 
such as DBSCAN and CNNs are gaining traction for anomaly 
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detection and feature extraction but require extensive 
computational power and proper parameter tuning. 

In general, machine learning models are effective tools in 
material testing and performance prediction, offering 
flexibility and accuracy, though computational complexity 
and data quality remain key challenges. 
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