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A r t i c l e  h i s t o r y  A B S T R A C T  

Infrastructure and urbanization drive the demand for concrete, which puts pressure 
on natural resources and jeopardizes the ecosystem. Incorporating recycled 
materials into concrete can fulfill this demand without sacrificing quality. This study 
examines the mechanical properties of sustainable concrete, employing fly ash (FA) 
and brick powder as substitutes for sand in fine aggregates. We evaluated rebound 
hammer strength, ultrasonic pulse velocity (UPV), workability, compressive 
strength, and split tensile strength using both destructive and non-destructive 
assessment methods, comparing them to conventional concrete. Concrete mixtures 
were developed by substituting 10% of natural sand with brick powder and gradually 
replacing the remaining sand with fly ash at 10% to 50%. The results clearly show 
that the best mix of 10% brick powder and 40% fly ash increases compressive 
strength by 64.81%, split tensile strength by 17.78%, and workability by 48%. The 
identical mixture yields a notable enhancement in ultrasonic pulse velocity (UPV) of 
33.15%, achieving a velocity of 4.9 km/s, and a 32.05% increase in rebound 
number, resulting in a rebound index of 44.92. A regression analysis indicated a 
significant correlation among compressive strength, UPV, and rebound index. The 
combination of 10% brick powder and 40% fly ash results in enhanced mechanical 
performance, reduced costs, and supports sustainable construction practices. 
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1 Introduction 

Concrete, a commonly used composite material, plays a 
crucial role as a structural element in the development of 
worldwide infrastructure. It is the second most widely used 
substance after water, with a global production of 
approximately 5.3 billion cubic meters per year [1]. Mehta et 
al. [2] has projected an increase to 18 billion tons by 2050. 
The composition comprises three fundamental components: 
water, aggregate, and cement. Cement, the main constituent 
of concrete, acts as a cohesive substance when mixed with 
water and aggregates in its powdered form. Concrete is a 
versatile material that is cost-effective, adaptable, durable, 
and malleable in various shapes and finishes. It has a high 
ability to withstand compression, a low ability to withstand 
tension, a limited ability to deform, and a weak resistance to 
cracking. Consequently, guaranteeing longevity has 
increasingly become a significant issue in the construction 
industry. 

The production of concrete accounts for roughly 8% of 
global CO2 emissions [3]. Portland cement, a major 
component, plays a significant role in this negative impact on 

 
*  Corresponding author: 

 E-mail address: saloua.filali@ump.ac.ma 

environmental pollution [4]. The extraction of raw materials 
used in concrete, sourced from the Earth's crust, has 
contributed to the global depletion of these resources. As a 
result, the extensive use of concrete has raised significant 
environmental and economic concerns [5, 6]. This 
necessitates the replacement of all or part of the cement with 
an eco-friendly material. In this scenario, we identified two 
objectives: the first was to reduce the CO2 emissions 
associated with cement manufacturing. On the other hand, 
the second approach aimed to reduce environmental impact 
by using leftover industrial materials as fine or coarse 
aggregates or as substitutes for cement. Over the past 
century, researchers have proposed various waste products 
from industry and agricultural materials as potential 
substitutes for concrete ingredients. These include rice husk 
ash, fly ash, sewage sludge ash, bagasse ash, polyvinyl 
chloride waste powder (PWP), and textile sludge ash (TSA). 
This approach effectively maintains natural resources, 
preventing their depletion, and improving the economy and 
sustainability of concrete production [7].  Fly ash, a by-
product of burning pulverized coal in thermal power plants, 

https://doi.org/10.5937/GRMK2400010S
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has gained significant attention from researchers as a 
potential alternative for substitution in concrete. Researchers 
generally classify fly ash into two categories: Class F and 
Class C [8]. Class F fly ash contains at least 70% combined 
silica, aluminum, and iron oxides, with a calcium oxide (CaO) 
content below 10%. This composition reduces the water 
demand in concrete mixtures and exhibits pozzolanic 
properties, improving the material's performance. 

Multiple studies have investigated the implications of 
substituting sand with fly ash in concrete. Siddique [9] 
focused his study on the effects of Class F fly ash on the 
mechanical and physical properties of concrete. The study 
involved replacing 10 to 50% of fine aggregate (sand) with 
fly ash. As the proportion of sand substitution increased, the 
concrete's compressive strength increased due to the 
pozzolanic effect of fly ash. The concrete exhibited enhanced 
tensile strength, flexural strength, and modulus of elasticity 
in comparison to the standard concrete. Even with the 
addition of a superplasticizer, the ease of handling newly 
mixed materials decreased, but 50% fly ash proved to be the 
most effective substitution. Ishimaru [10] performed a study 
on the use of fly ash as fine aggregates in conventional 
concrete and determined that it is suitable for constructing 
concrete structures. Their partial substitution greatly 
enhances the strength of conventional concrete, enabling 
their efficient utilization in structural concrete. Rajamane and 
Ambily [11] investigated the properties of concrete when less 
calcium fly ash replaced a portion of the sand. The levels of 
sand replacement were 0%, 20%, 40%, and 60%. The 
findings indicated that the compressive strengths at 28 days 
were comparable among all levels of replacement. 
Furthermore, fly ash concrete showed superior workability 
compared to control concrete. Bilir et al. [12] undertook a 
study to examine the impacts of using fly ash as fine 
aggregates on the mechanical properties of mortar. The 
results show that using fly ash as a replacement for 30% of 
the original material enhanced the mortar's ability to 
withstand deformation and improved its strength through its 
pozzolanic effect. Deo and Pofale [13] conducted a separate 
investigation in which he substituted fly ash at weight 
percentages of 12% and 27% for sand in the concrete 
compositions. All mixes maintained a water-to-cement ratio 
of 0.32, demonstrating pozzolanic properties. The findings 
indicated that the concretes containing fly ash demonstrated 
superior compressive strength, flexural strength, and 
workability in contrast to conventional concrete. Moreover, 
the inclusion of superplasticizers has the potential to 
enhance these properties even more. In a previous study, 
Islam and Rashid [14] investigated the effects of partially 
replacing sand with low-calcium fly ash at various amounts 
between 0% and 40%. According to the report, concrete with 
20% and 30% fly ash showed greater compressive strength 
than regular concrete when they had the same water/cement 
ratio. Yin et al. [15] study demonstrated that utilizing both fly 
ash and river sand results in an optimized particle size 
distribution of fine aggregates. The concrete mixture 
containing 30% fly ash demonstrated superior compressive 
strength in comparison to the conventional concrete, with a 
notable increase of 28.8%. Mao et al. [16] conducted a study 
showing that the strength of concrete increases with an 
increase in fly ash content, as long as it does not exceed 
40%. 

Fly ash particles are also very small and have a large 
specific surface area. This lets them fill up more space 
between the cement and aggregate particles, which makes 

the concrete denser. While there have been numerous 
important findings on the use of fly ash in concrete, literature 
is scarce on its application as a component substitute for fine 
aggregates.  

The landfill disposal of brick dust, a plentiful byproduct 
from brick kilns and construction sites, raises environmental 
concerns. Brick kilns are the main contributors to this waste, 
occupying valuable land and posing significant risks to both 
health and the environment. Researchers are increasingly 
interested in using brick powder (BP) as a partial alternative 
to sand in the composition of concrete mixtures. This is 
because (BP) has the potential to improve concrete's specific 
mechanical properties while also recycling construction 
waste. Researchers have conducted several studies to 
evaluate the viability of utilizing clay bricks as aggregates in 
concrete. Adamson et al. [17] showed that it is possible to 
substitute natural coarse aggregates with crushed bricks in 
concrete without causing any significant impact on its 
durability, as long as there are no steel reinforcements 
present. However, Bektas et al. [18] asserts that increasing 
the rate of brick substitution results in a decrease in the 
fluidity of the mortar. However, substituting 10% and 20% of 
the bricks did not hurt compressive strength and only had a 
minor effect on mortar shrinkage. In Nunung et al. study [19] 
the impact of incorporating lightweight bricks as a partial 
replacement for sand (at levels of 0%, 10%, 20%, and 30%) 
on the compressive strength of concrete was investigated. 
The results showed that substituting 10% and 30% of the 
material achieved the highest and lowest levels of 
compressive strength, respectively, at 24.45 MPa and 18.03 
MPa after 28 days. Gaspard et al. [20] conducted a study to 
examine how the substitution of fine aggregates with crushed 
clay bricks affects the concrete's workability and 
compressive strength. The study examined substitution rates 
of 10%, 15%, 25%, 50%, and 75%. The findings revealed a 
negative correlation between the replacement rate and 
compressive strength. The strength decreased gradually as 
the replacement rate increased, with a minimal reduction of 
9.63% observed at a replacement rate of 10%. However, a 
replacement rate of 75% recorded a maximum decrease of 
50% compared to the control sample, which exhibited a 
strength of 31.81 MPa. Momoh et al. [21] conducted a study 
to assess the effectiveness of different amounts of recycled 
concrete aggregate (15%, 22.5%, and 30%) and crushed 
clay bricks (10%, 15%, and 20%) as substitutes for coarse 
and fine aggregates in concrete. The test results indicated 
that the compressive strength ranged from 24.22 MPa to 
27.78 MPa after 7 days, from 27.95 MPa to 37.2 MPa after 
18 days, and from 25.15 MPa to 32.48 MPa after 28 days. 
To achieve optimal performance, the authors suggest 
keeping the crushed brick content within the range of 15% to 
20%. These findings are consistent with Srivinas et al. [22] 
research, which indicated that the ideal substitution of natural 
fine aggregates with crushed brick powder was 20%. 
Similarly, Aliabdo et al. [23] concluded that the amount of 
clay brick aggregate present in concrete.  should not exceed 
25% of the total aggregate content. Ibrahim et al. [24] found 
that lightweight concrete containing 25% used clay bricks 
reached a maximum strength of 25 MPa and had a density 
of 1647 kg/m3. This result is consistent with the findings 
reported by David et al. [25]. The literature review above 
indicates a dearth of information regarding the impact of 
adding clay brick powder to concrete's mechanical 
properties.
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2  Research relevance and objectives  

Reducing dependency on natural resources and 
mitigating environmental degradation are the primary goals 
of this study. The purpose of this analysis is to look closely 
at the properties of concrete that has had some of its natural 
sand replaced with fly ash and brick powder. To accomplish 
this, several different mixes were prepared. Brick powder 
replaces 10% of the sand in all the mixes, while fly ash 
gradually replaces the remaining sand, increasing the 
percentage from 10% to 50% in 10% increments. The study 
examines several concrete samples, including workability, 
compressive strength, split tensile strength, ultrasonic pulse 
velocity, and Schmidt rebound hammer index. We conduct 
an in-depth analysis to assess the feasibility and 
environmental benefits of this alternative method by 
examining the effects of these modifications on the 
composition and functionality of the concrete. 

3  Experimental study 

3.1  Characterization of materials 
 

The binding material chosen for this project is Portland 
cement CPJ 45, which has a minimum clinker content of 65% 
and will be used to create the concrete mixture. The 
remaining materials consisted of additives, including fly ash, 
pozzolans, and fillers provided by Holcim. These additives 
complied with the Moroccan specifications NM10.1.004 [26]. 
The concrete was prepared by mixing potable water sourced 
from Oujda's autonomous intercommunal water and 
electricity distributing agency (RADEEO), which meets the 
physical and chemical requirements specified in NM 

10.1.353 [27]. The sand used in this study was sourced from 
the Oujda region (Morocco) and is known for its exceptional 
purity. The substance's streamlined, balanced, and cuboid 
shape enables effortless manipulation and handling. The 
sand underwent a full day of air drying at room temperature 
to regulate the moisture content of the concrete. The sand 
reached a maximum size of 4.75 mm. The NF EN 12620 [28] 
standard guided the sand tests. This study utilized two 
distinct types of crushed coarse stone aggregates: G1, which 
had a sieve range of 5-11 mm, and G2, which had a sieve 
range of 11-20 mm.  The NF P-18-560 [29] standard guided 
the selection of these aggregates. This study uses F-class 
fly ash from Morocco's Jerada thermal power plant. 
Electrostatic methods collect the fly ash from the powdery 
particles in the flue gas stream of boilers powered by 
pulverized coal.  These measurements are per the NM 
10.1.004 [26] standard.  

The clay brick powder, derived from fragmented or 
demolished brick waste during manufacturing, was collected 
in a brick manufacturing plant (ARGILUX) located in Oujda. 
It was pulverized into fine particles using a ball mill until all 
particles were reduced to a size smaller than 4.75 mm.  The 
particles utilized as a replacement for sand are those that 
can pass through a 4.75–5 mm sieve and are captured by a 
sieve with a size of 75–90 microns. The choice to use brick 
powder as a substitute material is justified by its pozzolanic 
properties, which require a minimum composition of SiO2, 
CaO, Al₂O₃, and Fe₂O₃ that exceeds 70%. Figure 1 depicts 
the particle size analysis of the various materials employed. 
Table 1 presents the physical characteristics of cement, 
sand, coarse aggregates, fly ash, and brick powder. Table 2 
displays the chemical constituents of cement, brick powder, 
sand, and fly ash. 

 
 

 

Fig. 1. Particle size distribution of aggregates 
 
 

Table 1. Physical properties of constituent materials 

Property cement fly ash sand G1 G2    BP 

Specific Gravity    3.15  2.52   2.68  2.70 2.72  2.18 

Water absorption %   3.01   2.50  1.48 1.50  5.25 

Fineness modulus    0.96   2.85  6,62 6,82  2.87 

Initial setting time (min)    180      

Final setting time (min)    210      

Fineness Blaine 
cm2/gm)  

   3100 3360     
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Table 2. The chemical constitution of cement, sand, fly ash, and brick  

Constituent 
(%) 

cement (%) by 
mass 

BP (%) by 
mass 

sand (%) by 
mass 

fly ash (%) by 
mass 

CaO 60.06 7,12 5.58 1,12 

SiO2 20,90 43,24 77,40 55,2 

Fe2O3 3,90 21,6 2,66 11,2 

AL2O3 5,85 11,92 8,18 28,3 

MgO 1,85 2,42 0,77 0,68 

K2O 2,14 2,15 0,25 1,45 

TiO2 0,32 1,86 0,005 1,5 

SO3 2,35 6,02 0,018 0,44 

LOI 21,84 3,42 …….. 1,06 

 
 

In order to evaluate the effects of partially replacing 
natural sand with brick powder and fly ash on concrete 
performance, six mixtures were prepared. One of these 
mixtures contained only natural sand (ordinary concrete), 
while the others incorporated fly ash and brick powder as 
partial replacements for natural sand, using a water-to-
cement ratio of 0.55. The concrete mixtures were prepared 
using the Dreux-Gorisse [30] concrete mix design method, 
with a constant cement dosage of 350 kg per 1 m³ of 
concrete in all mixtures. Table 3 specifies the proportions of 
fly ash, brick powder, sand, coarse aggregates, and cement. 
The abbreviation SFS denotes the substitution of fly ash for 
natural sand, while SB signifies the substitution of brick 
powder for natural sand. For instance, the code SB10-SFS10 
signifies a blend where brick powder replaces 10% of the 
natural sand and fly ash replaces the remaining 10%. 
 
3.2  Test Parameters 
 

The Oujda Faculty of Science's building materials 
laboratory and the LABNORVIDA testing laboratory in Oujda 
were the sites of the study's experimental program. A 125-
liter pan mixer was used to meticulously prepare the 
concrete mixes. The procedure started with adding big 
aggregates to the mixer, then fine aggregates. Next, a small 
amount of water, equal to a fraction of the total amount, was 
added. Following this, the remaining water was added to the 
cement, fly ash, and brick powder mixture. We considered 
the mixture complete only after running the mixer 
continuously. 
 
3.2.1  Workability 
 

The research objective was to assess the impact of 
substituting a portion of natural sand with a combination of 
brick powder and fly ash on the workability of fresh concrete. 
The consistency of the concrete was evaluated by 
conducting slump tests using the Abrams cone method, as 
specified in NF EN 12350-2 [31]. The slump cone had 
conventional measurements: 300 mm in height, with a 200 
mm base diameter and a 100 mm top diameter. The 

workability of each mixture was evaluated by performing 
slump tests and measuring the slump values for the various 
concrete compositions. The average result was calculated 
using three specimens. 
 
3.2.2  Compressive, split tensile, and flexural strength 
 

The assessment of the structural capacity of concrete in 
buildings relies heavily on the measurement of compressive 
strength. Concrete cubes with dimensions of 150 mm on 
each side were created to determine the concrete's 
compressive strength. The NF EN 12390-3 [32] standard 
mandates evaluating the compressive strength at various 
curing ages, specifically on days 7, 14, 28, and 56. The 
samples were subjected to a curing process in an 
environment with 100% relative humidity and a constant 
ambient temperature of 27 ± 2°C using water. Cylinders with 
dimensions of 300 mm in height and 150 mm in diameter 
were manufactured to measure the split tensile strength of 
the concrete. Under the specifications outlined in NF EN 
12390-6 [33], the evaluation of tensile strength was 
performed after curing has lasted until the day of the test. 
 
3.2.3  Ultrasonic pulse velocity 

 
Ultrasonic pulse velocity testing, a non-destructive 

method, can assess concrete quality on-site. The quality of 
concrete on all samples was evaluated using the NF EN 
12504-4 [34] standard procedure for ultrasonic testing after 
28 days of curing. The experiment was carried out using a 
voltage of 500 V and a frequency of 54 kHz. The device 
incorporates a processing unit that transmits and receives 
ultrasonic pulses while also measuring the time duration 
between these two operations. The device transmits sound 
energy through two probes. The time interval between the 
transmitting probe's transmission of sound energy into the 
concrete and the receiving probe's detection of this energy 
determines the pulse velocity. This study used a direct 
method to generate the pulse to carry out this process. The 
pulse velocity is unaffected by the substance's form and 
structure as it passes through, but it does depend on the  

 
Table 3. Mixture proportions with w/c=0,55. 

Mix 
identification     

BP 
% 

fly ash  
     % 

water 

(Kg/m
3

) 
cement 

(Kg/m
3

) 
G1 

(Kg/m
3

) 
G2 

(Kg/m
3

) 
sand 

(Kg/m
3

) 
fly ash 

(Kg/m
3

) 
BP 

(Kg/m
3

) 

SB0SFS0 0 0 192 350 320 815 763 0     0 

SB10-SFS10 10 10 192 350 320 815 611 76 76 

SB10-SFS20 10 20 192 350 320 815 534 153 76 

SB10-SFS30 10 30 192 350 320 815 458 229 76 

SB10-SFS40 10 40 192 350 320 815 382 305 76 

SB10-SFS50 10 50 192 350 320 815 305 382 76 
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material's elastic properties. Longitudinal waves are 
detected by the receiver, which are the fastest. When the 
concrete's density, homogeneity, and uniformity are high, we 
observe greater velocity values. Compromise in quality 
results in reduced values. 
 
3.2.4  Schmidt rebound hammer 

 
For a non-destructive way to find out how strong concrete 

is under compression, engineers use the rebound hammer 
(Figure 2). This control technique, in line with NF EN 12504-
2 [35], allows for the estimation of concrete strength. This 
technique is based on the idea that the rebound of an elastic 
mass is proportional to the surface hardness of the concrete 
it hits. The design checks the consistency and quality of the 
concrete, providing a quick and easy indication of its 
compressive strength. As the apparatus operates, a spring-
loaded mass moves along a plunger within a tube. Lower 
rebound values are associated with lower-strength concrete 
due to the increased energy absorption observed in this 
material. After obtaining the rebound number, the 
manufacturer's supplied chart displayed the compressive 
strength for each rebound value. The rebound measurement 
of the sclerometer is the average of 10 measurements taken 
at different points on the same sample. These points must 
be spaced at least 20 mm apart. 

4  Results and conversational analysis 

4.1 The influence of brick powder and fly ash on concrete 
compressive strength 

 
The compressive strength of concrete samples was 

measured. Throughout the process, the specimens were 
water-cured. On days 7, 14, 28, and 56, after allowing 
samples to dry for one full day, each concrete specimen was 
analyzed. The average result was calculated using three 
specimens. The results of the compressive strength were 
obtained using the universal testing machine. Table 4 
displays the compressive strength values for each specimen.  

Figure 3 shows that replacing 10% of sand with brick 
powder significantly improves the compressive strength by 
increasing the fly ash content from 10% to 40%. Compared 
to the conventional, the SB10SFS40 mix has better 
compressive strength, increasing 64.81%, 34.84%, 60.77%, 
and 45.80% at 7, 14, 28, and 56 days. Furthermore, the 
study's results indicate that the gradual improvement in 
compressive strength is particularly significant at the 28 and 
56-day marks. This is due to the slow reaction of calcium 
hydroxide released during cement hydration with fly ash. The 
findings indicate that a blend of 10% brick powder and a 
maximum of 40% fly ash is optimal for improving the 
compressive strength of concrete mixtures. Utilizing these  

 

 

Fig. 2. Schmidt rebound hammer 
 

Table 4. Compressive strength of concrete with brick powder and fly ash  

Mix designation Concrete’s compressive strength (MPa) 

 7 days 14 days 28 days 56 days 

SB0SFS0 18,50 23,88 27,94 30,72 

SB10-SFS10 24,62 27,04 38,74 37,37 

SB10-SFS20 26,01 28,18 40,90 40,22 

SB10-SFS30 28,80 31,19 43,16 42,82 

SB10-SFS40 30,49 32,20 44,92 44,79 

SB10-SFS50 28,68 29,94 39,87 38,95 

 
 
 

 

Fig. 3. Compressive strength of brick powder and fly ash concrete.  
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Compressive strength of brick powder and fly ash concrete 
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materials in moderate amounts appears to enhance the 
density and overall strength of the concrete by promoting a 
more efficient pozzolanic reaction and effective pores filling. 
However, going over these recommended replacement 
rates, especially for fly ash levels above 40%, could lower 
the compressive strength. This could be because the mixture 
will have more voids in it. 
 
4.2. The influence of brick powder and fly ash on the 

workability of concrete 
 

Figure 4 shows workability values, indicating a significant 
decline in mixtures containing brick powder (SB) and fly ash 
(SFS). The lowest slump measured is 39 mm, while the 
highest is 75 mm. When compared to the control concrete, 
this combination yields a reduction of about 48%. This is 
because the brick powder particles are angular and irregular 
in shape, which has a direct impact on workability. This is 
because the particles are more difficult to mobilize, leading 
to a growth in water demand and a reduction in the mix's air 
content. More energy is required to overcome this internal 
resistance and bring about the intended collapse. Fly ash's 
higher water requirements for particle coating further impede 
mixture flow and complicate handling.  Hebhoub et al. [36], 
Aliabdo et al. [37], Ashish [38], and Vardhan et al. [39] 
research recommends incorporating water or using 
superplasticizers to address this limitation. 
 
4.3  The influence of brick powder and fly ash on the split 

tensile strength of concrete 
 
Concrete samples were subjected to tests to determine 

their splitting tensile strength. The procedure involved 
subjecting the specimens to water curing. We allowed the 
concrete specimens to dry for a full day before analyzing 
them on days 7, 14, 28, and 56. The splitting tensile strength 
results were obtained using the universal testing 
machine. Table 5 displays the splitting tensile strength 
values for each test specimen under various sand 

substitutions. The average result was calculated using three 
specimens. The set of substitutions combines 10% brick 
powder and fly ash at rates of 10%, 20%, 30%, 40%, and 
50%. 

The results presented in Figure 5 indicate that replacing 
sand with 10% brick powder and combining it with fly ash in 
proportions of 10% to 40%, enhances tensile strength. The 
SB10-SFS40 mixture exhibits enhanced tensile strength 
relative to conventional concrete at 7, 14, 28, and 56 days, 
with improvements of 17.75%, 8.09%, 17.78%, and 17%, 
respectively. Adding 50% more fly ash (SB10-SFS50) lowers 
the tensile strength slightly at all testing ages. This could be 
because the concrete particles become less tightly 
connected or more voids are in the mix. This highlights the 
importance of determining an optimal substitution rate to 
improve concrete's mechanical efficiency. 

Brick powder and fly ash synergistically enhance the 
strength of the concrete matrix by effectively occupying the 
pores and increasing density, resulting in improved strength. 
This approach enhances mechanical properties, minimizes 
expenses, and mitigates environmental impact, rendering 
this strategy appealing for sustainable construction 
applications. 
 
4.4  The influence of brick powder and fly ash on the velocity 

of ultrasonic pulses 
 

Figure 6 presents data on the ultrasonic pulse velocity 
(UPV) and compressive strength after 28 days for various 
concrete mixtures. The UPV values, ranging from 3.68 km/s 
to 4.9 km/s, with an average of 4.21, indicate high-quality 
cement paste. This suggests that adding brick powder and 
fly ash to the concrete has a positive impact on its UPV. 
Compared to conventional concrete (mix SB0-SFS0), the 
UPV increases by 7.88%, 14.40%, 20.92%, and 33.15%, 
respectively, when replacing 10% of the sand with brick 
powder and gradually increasing the amount of fly ash from 
10% to 40%.  

 

 

Fig. 4. Workability of brick powder and fly ash concrete 
 

Table 5. Split tensile strength of concrete with brick powder and fly ash  

Mix designation Concrete’s split tensile strength (MPa) 

 7 days 14 days 28 days 56 days 

SB0-SFS0 2,76 3,09 3,43 3,60 

SB10-SFS10 2,92 3,01 3,58 3,79 

SB10-SFS20 3,01 3,13 3,90 3,88 

SB10-SFS30 3,16 3,29 3,96 4,05 

SB10-SFS40 3,25 3,34 4,06 4,14 

SB10-SFS50 3,14 3,16 3,73 3,81 
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Fig. 5. Split tensile strength of brick powder and fly ash concrete 
 
 

 

Fig. 6. UPV and compressive strength correlation in concrete with brick powder and fly ash replacement  
 
 

To assess the UPV and compressive strength (fC) of 
concrete containing brick powder and fly ash, a correlation 
between UPV and fC was examined using a least squares 
regression analysis. Equation (1) presents the derived 
formula for calculating compressive strength, based on the 
acquired data. 

 (1) 

To maximize the advantages of brick powder and fly ash 
while preserving the mechanical and physical properties of 
concrete, it is essential to ascertain the optimal substitution 
rate. In this context, incorporating 10% brick powder into 
mixtures with 10%, 20%, 30%, or 40% fly ash has been 
shown to improve ultrasonic pulse velocity. Factors such as 
the enhanced density of the concrete matrix, elevated 
pozzolanic reactivity, the filler effect, and a decrease in 
imperfections and fissures all contribute to this improvement 
in ultrasonic wave transmission. 
 
 
 
 
 
 
 
 

4.5  The influence of brick powder and fly ash on the 
Schmidt rebound hammer 

 

Tests were performed on concrete cube specimens at the 
28-day mark using a Schmidt hammer. The results of the 
rebound number for the cement paste with various sand 
substitutions are shown in Figure 7. The results show that 
replacing 10% of the sand with brick powder and increasing 
the fly ash (SFS) content from 10% to 40% raises the 
rebound number by 20%, 25.48 %, 26.33 %, and 32.05 %, 
respectively. Despite a minor reduction at a fly ash 
percentage of 50% (SB10-SFS50), the rebound number 
continues to exceed that of the control mixes. The data 
suggests that a balanced approach, with moderate 
replacement levels, such as 40% fly ash and 10% brick 
powder, is most advantageous. 

The method of least squares was utilized to perform a 
regression analysis of the correlation between rebound 
number and compressive strength, as measured by the 
Schmidt hammer when substituting sand with fly ash and 
brick powder. We used the data from Figure 7 and Equation 
(2) to derive the following formula for calculating 
compressive strength:  

 (2) 
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Fig.7.  Rebound number and compressive strength correlation in concrete with brick powder and fly ash replacement  
 
 
5  Conclusion 

Investigations into sustainable substitutes for natural 
sand in concrete, including fly ash and brick powder, have 
revealed a significant deficiency in comprehending the 
synergistic interactions of these materials. Previous studies 
have examined individual substitutes, but none have 
thoroughly investigated the synergistic effects of fly ash and 
brick powder. This study sought to address that gap by 
assessing the effects of these alternatives on concrete's 
workability, rebound number, ultrasonic pulse velocity, split 
tensile strength, and compressive strength. 

Using 40% fly ash and 10% brick powder instead of sand 
increased the compressive strength by 64.81% and the split 
tensile strength by 17.78%. However, the workability 
decreased by 48% compared to the control mix (SB0-SFS2). 
The SB10-SFS40 mix achieved an ultrasonic pulse velocity 
of 4.9 km/s, indicating a 33.15% improvement. Additionally, 
it increased the rebound number by 32.05%, reaching a 
maximum of 48.2 on the Schmidt hammer test. We used 
least squares regression to find strong links between 
compressive strength, rebound number, and ultrasonic pulse 
velocity. These links led to reliable formulas for estimating 
compressive strength based on these variables. 
Significantly, when fly ash replacement exceeded 40%, it 
only slightly reduced mechanical performance. 

In summary, the ideal equilibrium for improving the 
mechanical properties of concrete, lowering expenses, and 
mitigating environmental effects entails the incorporation of 
10% brick powder with a maximum of 40% fly ash. Better 
pozzolanic reactions and good pore filling enable this 
synergy, resulting in stronger and denser concrete. The 
results underscore a substantial advancement in sustainable 
construction, providing an environmentally friendly solution 
that alleviates strain on natural resources while enhancing 
concrete performance. 
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This literature review explores the application of machine learning (ML) techniques 
in civil engineering material testing, with a focus on asphalt mixtures, concrete 
properties, and pavement system classification. The review provides a 
comprehensive comparison of various ML models, including Artificial Neural 
Networks (ANNs), Support Vector Machines (SVMs), Random Forest (RF), 
Gradient Boosting (GB), and Gaussian Process Regression (GPR), assessing their 
strengths and limitations in predicting material performance. Key findings indicate 
that ensemble methods, such as Gradient Boosting and XGBoost, consistently 
outperformed other models in terms of prediction accuracy and handling nonlinear 
relationships, although they require significant computational power. In contrast, 
simpler models like SVM and ANN demonstrated strong predictive capabilities with 
smaller datasets but were prone to overfitting and computational challenges. 
Additionally, unsupervised learning methods, such as K-means clustering and 
Principal Component Analysis (PCA), proved effective in classifying pavement 
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accuracy and reduce computational costs, highlighting the need for further research 
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1 Introduction 

Civil engineering has long relied on empirical methods 
and extensive experimental testing to evaluate the 
performance of materials, structures, and infrastructure 
systems. However, the increasing complexity of modern 
construction projects and the growing need for more 
accurate predictions of material behavior under varying 
conditions have led to a shift towards more data-driven 
approaches. In this context, machine learning (ML) has 
emerged as a powerful tool for advancing civil engineering, 
particularly in the field of material testing and performance 
prediction [1], [2]. 

Machine learning enables civil engineers to analyze vast 
amounts of experimental data, detect patterns, and build 
predictive models that can forecast material behavior under 
different loading conditions, environmental factors, and time 
frames. With the ability to model nonlinear relationships and 
optimize multiple variables simultaneously, ML offers 
significant advantages over traditional statistical and 
empirical models [3], [4]. It can enhance decision-making 
processes in areas such as material design, optimization, 
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and failure prediction, thereby reducing costs, increasing 
efficiency, and improving overall performance [2], [5].  
 
1.1 Machine learning in material testing  
 

In civil engineering, material testing is critical for 
determining the properties of construction materials such as 
asphalt, concrete, and fiber-reinforced composites. These 
materials exhibit complex behaviors when subjected to 
stress, temperature changes, and aging. Machine learning 
models can simulate these behaviors and offer insights that 
would otherwise require costly and time-consuming physical 
tests [6]–[8]. 

For example, ML algorithms are used to predict key 
material properties such as compressive strength, modulus 
of elasticity, tensile strength, rut depth, fracture energy, and 
more. Techniques such as Artificial Neural Networks (ANNs), 
Support Vector Machines (SVMs), Random Forests (RF), 
and Gradient Boosting (GB) have demonstrated strong 
predictive capabilities in areas like asphalt mixture 
performance and concrete strength estimation. These 
models not only improve the accuracy of predictions but also 
allow for the integration of a wide range of input parameters, 
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such as material composition, environmental conditions, and 
load types [6], [9]–[11].  
 
1.2 Advantages and challenges  
 

The application of machine learning in material testing 
offers several advantages. First, it reduces the reliance on 
extensive experimental testing by providing accurate 
predictions based on historical data. This is especially 
beneficial in large-scale infrastructure projects with limited 
time and resources [12]–[14]. Second, ML models are highly 
flexible, and able to account for nonlinear interactions 
between multiple variables, thus offering deeper insights into 
how different factors influence material behavior [15], [16]. 
Finally, these models can be continually improved as more 
data becomes available, leading to more refined predictions 
over time [17]–[19]. 

However, the adoption of machine learning in civil 
engineering also presents challenges. One of the primary 
concerns is the availability and quality of data. ML models 
require large datasets to function effectively, and 
inconsistencies in data collection can lead to inaccurate 
predictions [20], [21]. Moreover, the "black box" nature of 
some machine learning algorithms, particularly deep 
learning models, may hinder the interpretability of results, 
making it difficult for engineers to trust the outcomes without 
a clear understanding of how predictions were generated 
[22].  
 
1.3 Current trends in research 

 
Recent research in civil engineering has explored the use 

of machine learning models to solve complex material testing 
problems, including asphalt mixture performance and 
optimization, concrete property prediction and structural 
performance, and classification and pattern recognition in 
pavement systems. Many studies have demonstrated the 
effectiveness of machine learning in improving accuracy, 
reducing experimental costs, and providing actionable 

insights for material design and testing. For example, 
Artificial Neural Networks (ANNs) have been widely used to 
predict the compressive strength of concrete, while Support 
Vector Machines (SVMs) have shown strong performance in 
predicting fracture energy and elastic modulus in various 
materials [9], [10], [15]. Figure 1 illustrates key machine 
learning methods in civil engineering material testing, 
organized by learning type (supervised, unsupervised, 
ensemble, hybrid) and their applications in asphalt, concrete, 
and pavement analysis. 
 
1.4 Scope of this review 

 
This literature review aims to provide a comprehensive 

overview of the applications of machine learning in material 
testing within civil engineering, focusing on the following 
three key areas: 

• Asphalt Mixture Performance and Optimization: 
Includes studies predicting the properties of asphalt 
mixtures, such as dynamic modulus, rut depth, and binder 
content, as well as optimizing asphalt mix designs. 

• Concrete Property Prediction and Structural 
Performance: Covers the prediction of concrete properties 
like compressive strength, elasticity, and shear strength, as 
well as the performance of fiber-reinforced concrete. 

• Classification and Pattern Recognition in Pavement 
Systems: Discusses studies that use machine learning to 
classify pavement distress, predict cracking patterns, and 
identify structural issues within pavement systems. 

The review will discuss the different machine learning 
models used in literature, the key performance metrics they 
predict, and the pros and cons of each approach. Special 
emphasis will be placed on comparing multiple models 
applied simultaneously in material testing, as researchers 
increasingly use ensemble methods and comparative 
analysis to identify the best-performing models for specific 
engineering problems. 

 

 

Figure 1. Machine learning methods in civil engineering material testing 
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2 Asphalt mixture performance and optimization 

Machine learning has played a transformative role in the 
prediction and optimization of asphalt mixture performance, 
with various models being applied to forecast essential 
performance metrics such as dynamic modulus, rut depth, 
and Marshall stability.  

Fan et al. (2024) utilized a Back-Propagation Neural 
Network (BPNN) and Support Vector Machine (SVM) to 
predict the strength of asphalt mixtures across diverse 
service conditions. They considered inputs such as stress 
states (direct tensile, uniaxial compression, indirect tensile, 
and four-point bending), temperature ranges from −25°C to 
35°C, and loading rates between 0.02 MPa/s and 0.5 MPa/s. 
While SVM achieved slightly better accuracy (R² of 0.9983) 
than BPNN (R² of 0.9979), BPNN performed better in terms 
of minimizing small errors (Mean Absolute Percentage 
Deviation: 0.067 vs. 0.145). This demonstrated that although 
SVM excels in accuracy, BPNN could offer more consistent 
performance in specific scenarios by reducing smaller errors 
[2]. 

Upadhya et al. (2022) applied ANN, SVM, Gaussian 
Processes (GP), and Random Forest (RF) to predict the 
Marshall stability of glass fiber-reinforced asphalt mixes. The 
input variables included bitumen content, glass fiber content, 
fiber length, and bitumen grade, while the output variable 
was Marshall stability. The study showed that SVM with a 
Pearson Universal Kernel (PUK) achieved the best results 
(CC = 0.8776 and RMSE = 1.9653), making it the most 
accurate model for this application. ANN demonstrated 
reliable performance but showed higher errors during the 
testing phase, while GP and RF performed competitively but 
were outperformed by SVM. The results emphasized SVM's 
strength in managing nonlinear relationships, though its 
effectiveness depended heavily on kernel tuning, which 
posed a challenge in some applications [6]. 

In the study by Rondinella et al. (2023), SVM and 
Categorical Boosting (CatBoost) were applied to predict the 
mechanical and volumetric properties of road pavement 
asphalt mixtures incorporating recycled materials such as 
construction and demolition waste (C&DW) and reclaimed 
asphalt pavement (RAP). The input variables included 
gyratory revolutions, RAP content, water content, and 
bitumen properties, with the output variables being indirect 
tensile strength (ITS) and saturated surface dry voids 
(SSDV). CatBoost demonstrated superior accuracy (R² = 
0.9916 for ITS) compared to SVM (R² = 0.8828), particularly 
excelling in handling categorical data, which made it more 
efficient for complex material datasets [4]. 

The study by Khorshidi et al. (2023) investigated the 
effects of different proportions of alternative materials, 
including Reclaimed Asphalt Pavement (RAP), crumb rubber 
(CR), steel slag (SS), and waste engine oil (WEO), on the 
performance of asphalt mixtures. Using 44 mixtures with 
varying RAP (0–75%), WEO (0–15%), CR (0–15%), and SS 
(0% or 20%) contents, the study evaluated cracking 
resistance, rutting resistance, and moisture damage. 
Machine learning models, including feed-forward neural 
networks (FNN), generalized linear models (GLM), support 
vector regression (SVR), and Gaussian process regression 
(GPR), were applied to predict the optimal content 
combinations. GPR performed the best, accurately 
identifying the most suitable material ratios for different high-
traffic conditions. While GPR effectively modeled complex 
relationships, its computational demands and tuning 
requirements were noted as challenges. The study 
concluded that GPR provided reliable predictions for 

optimizing the balance between cracking resistance, rutting 
resistance, and moisture damage in asphalt mixtures with 
recycled materials [23]. 

Another study conducted by Khorshidi et al. (2023) 
assessed the effects of RAP, CR, SS, and WEO on the 
cracking resistance of asphalt mixtures. Using performance 
indices from the Illinois Flexibility Index Test (I-FIT), a deep 
neural network (DNN) model was applied to predict mixture 
performance and was compared with linear and polynomial 
regression models. The DNN outperformed the other 
models, achieving a coefficient of determination (R²) of 0.84, 
compared to 0.60 for linear and 0.66 for polynomial 
regression. DNN’s advantages included its ability to capture 
complex nonlinear relationships, providing more accurate 
predictions. However, it required more data and 
computational resources. Overall, DNN proved to be a 
reliable model for predicting cracking resistance in asphalt 
mixtures with recycled materials [5]. 

Liu et al. (2023) applied multiple models, including SVR, 
KRR, ANN, Gradient Boosting (GB), and XGBoost, to predict 
the dynamic modulus (|E*|) of asphalt mixtures. The input 
variables consisted of temperature, loading frequency, 
binder properties (such as viscosity and phase angle), and 
aggregate gradation. XGBoost delivered the highest 
accuracy (R² = 0.9867, RMSE = 2.7422) due to its ability to 
handle nonlinear interactions and prevent overfitting through 
regularization techniques. However, it required considerable 
computational resources, which posed a limitation for its 
scalability in large-scale applications. Other models like 
ANN, while effective, were prone to overfitting and required 
substantial hyperparameter tuning, which made them less 
practical for routine use [1]. 

Liu et al. (2022) further explored the prediction of rut 
depth using SVR, RF, ANN, and GB models. The input 
variables included traffic data (e.g., Equivalent Single Axle 
Loads, ESALs), climate conditions, pavement material 
properties (e.g., binder content, air voids), and structural 
attributes (layer thicknesses). GB was identified as the best-
performing model, achieving an R² of 0.9236, showcasing its 
effectiveness in capturing nonlinear interactions within the 
dataset. While ANN also performed well (R² = 0.9021), it 
required more computational power and tuning. RF lagged in 
performance with lower accuracy, while SVR showed 
significant variance in predictions due to its sensitivity to 
parameter selection [24]. 

In a separate study, Liu et al. (2022) used machine 
learning models to predict effective asphalt content (Pbe) 
and absorbed asphalt content (Pba) in asphalt mixtures. 
Gradient Boosting was the top performer, with R² values of 
0.9479 and 0.9459 for Pbe and Pba, respectively, excelling 
in managing nonlinear relationships. RF performed 
adequately but was less accurate compared to Gradient 
Boosting. SVR showed moderate accuracy but was more 
prone to performance drops when handling larger datasets 
[25]. 

Liu et al. (2022) also explored the prediction of the 
International Roughness Index (IRI) of asphalt pavements 
using Support Vector Regression (SVR), Random Forest 
(RF), Artificial Neural Networks (ANN), Gaussian Process 
Regression (GPR), Extra-Trees, and Gradient Boosting 
(GB), combined with dimensionality reduction techniques 
like Autoencoders (AE), Principal Component Analysis 
(PCA), and Recursive Feature Elimination (RFE). The input 
variables included temperature, Equivalent Single Axle 
Loads (ESALs), layer thickness, binder content, air voids, 
and aggregate gradation, while the output variable was IRI. 
The AE-GPR model demonstrated the highest accuracy      
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(R² = 0.939), outperforming other models by efficiently 
managing high-dimensional data. Autoencoders significantly 
improved model performance by reducing input noise and 
computational load. In contrast, models like SVR and RF 
showed lower performance due to overfitting and sensitivity 
to hyperparameter tuning, while ANN performed well but was 
computationally expensive [26]. 

Majidifard et al. (2020) employed Gene Expression 
Programming (GEP) to predict rut depth in asphalt mixtures 
subjected to the Hamburg Wheel-Tracking Test (HWTT). 
The model inputs included asphalt binder properties, 
aggregate size, and reclaimed asphalt content, while the 
output was rut depth. GEP outperformed ANN by providing 
explicit mathematical expressions, making the model more 
interpretable and offering engineers insights into the factors 
driving rutting behavior. However, GEP required careful 
tuning of parameters like chromosome length, limiting its 
practicality for complex datasets [27]. 

Rahman et al. (2021) explored various ensemble 
methods, including Extra-Trees, GB, and SVR, to predict rut 
depth and indirect tensile (IDT) strength in asphalt mixtures. 
Extra-Trees demonstrated the highest prediction accuracy 
(R² = 0.922 for rut depth), but it was sensitive to imbalanced 
data, which affected its generalization. GB and SVR provided 
more robust predictions across diverse datasets but required 
more extensive computational resources to minimize bias 
and ensure balanced predictions [9]. 

Tiwari et al. (2022) applied ANN with various activation 
functions (Exponential Linear Unit, ELU, and Hyperbolic 
Tangent, TanH) to predict the mechanical properties of 
asphalt mixes with industrial waste fillers. The input variables 
included air void content, filler type, and filler content, while 
the output variables included Marshall stability and indirect 
tensile strength. The TanH activation function performed 
better, achieving R² = 0.9967, though it required higher 
computational power due to increased complexity in 
capturing nonlinear relationships [28]. 

In another study, Tiwari et al. (2023) applied ANN with 
different activation functions, including TanH and ELU, to 
predict mechanical properties of asphalt mixtures with silica 
fume fillers. The TanH-SNN model achieved the highest 
accuracy (R² = 0.9988), outperforming other models in terms 
of capturing nonlinear relationships between inputs and 
outputs, though the increased complexity required more 
computational power [29]. 

Ali et al. (2021) used XGBoost to predict dynamic 
modulus in asphalt mixtures, outperforming traditional 
models such as the Witczak and Hirsch models (R² = 0.961). 
XGBoost’s strength lay in its ability to handle complex 
nonlinear relationships and avoid overfitting, though its 
computational demands limited its practicality in smaller-
scale applications. ANN models, while competitive, lacked 
interpretability and required more extensive resources to 
train [30]. 

Mirzaiyanrajeh et al. (2022) used ANN, Self-Validated 
Ensemble Modeling (SVEM), and Augmented Full Quadratic 
Model (AFQM) to predict low-temperature fracture energy of 
asphalt mixtures. ANN provided the highest accuracy but 
was computationally expensive, whereas SVEM, although 
slightly less accurate, was more efficient with small datasets, 
striking a balance between accuracy and computational 
efficiency [31]. 

Liu et al. (2023) utilized recurrent neural networks (RNN), 
long short-term memory (LSTM), and gated recurrent units 
(GRU) for time series modeling to predict rutting depth. Input 
variables included historical rutting depth, temperature, and 
pavement properties. GRU outperformed both RNN and 

LSTM, achieving an R² value of 0.90. GRU's ability to retain 
long-term memory with fewer parameters made it more 
computationally efficient, though LSTM still performed well in 
capturing seasonal trends in the data [32]. 

Finally, Al-Sabaeei et al. (2023) employed XGBoost and 
Random Forest Regression (RFR) to predict mixing and 
compaction temperatures for bio-modified asphalt using 
crude palm oil (CPO) and tire pyrolysis oil (TPO) as 
modifiers. XGBoost outperformed RFR in predicting shear 
viscosity, but RFR demonstrated better accuracy for 
temperature predictions, with R² values of 0.96583 for mixing 
temperature and 0.96281 for compaction temperature. Both 
models excelled in accuracy but were limited by their high 
computational requirements [33]. 
 
2.1 Summary of methods 
 

Table 1 provides a detailed summary of studies focusing 
on machine learning approaches and their applications in 
asphalt mixture performance prediction. Across the studies 
reviewed, several machine learning methods were employed 
to predict key asphalt mixture performance metrics, including 
dynamic modulus, rut depth, Marshall stability, International 
Roughness Index (IRI), and crack resistance. Each method 
presented unique strengths and weaknesses, as highlighted 
below: 

• Artificial Neural Networks (ANNs): Frequently used for 
predicting complex performance metrics, ANNs 
demonstrated strong accuracy in predicting properties such 
as Marshall stability, dynamic modulus, and fracture energy. 
ANNs excel in capturing intricate nonlinear relationships 
between variables, especially when paired with activation 
functions like TanH and ReLU. However, their major 
drawbacks include computational expense, the need for 
large datasets, and a propensity for overfitting without careful 
tuning of hyperparameters. In studies by Upadhya et al. 
(2022) Tiwari et al. (2022), and Khorshidi et al. (2023), ANNs 
and DNNs performed well but required significant 
computational resources and hyperparameter optimization 
[5], [6], [28]. 

• Support Vector Machines (SVMs): SVM models, 
particularly when paired with kernel methods like the 
Pearson Universal Kernel (PUK), were highly accurate in 
predicting metrics such as strength and Marshall stability. 
SVMs excel in handling nonlinear relationships and are 
particularly effective with small- to medium-sized datasets. 
However, as seen in studies like Fan et al. (2024) and 
Upadhya et al. (2022), SVMs require careful kernel tuning 
and can struggle with large datasets due to high 
computational costs and sensitivity to hyperparameters [2], 
[6]. 

• Gradient Boosting (GB) and XGBoost: These ensemble 
learning methods consistently outperformed other models in 
predicting dynamic modulus, rut depth, and other asphalt 
mixture properties. XGBoost, in particular, has proven to be 
highly effective at managing nonlinear interactions, 
regularizing models to avoid overfitting, and delivering 
superior prediction accuracy. This method was widely used 
in studies such as Liu et al. (2023) and Ali et al. (2021), where 
XGBoost delivered top results in predicting dynamic modulus 
and shear viscosity [1], [30]. However, XGBoost requires 
significant computational power and tuning, which can limit 
its practicality in certain applications. 

• Gaussian Process Regression (GPR): GPR excels at 
modeling complex nonlinear relationships and provides both 
predictions and uncertainty estimates. It is particularly 
effective for small to medium datasets but can be 
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computationally demanding and requires careful tuning of 
hyperparameters. In studies by Khorshidi et al. (2023), GPR 
outperformed other models in predicting the optimal 
combinations of alternative materials in asphalt mixtures, 
accurately balancing cracking resistance, rutting resistance, 
and moisture damage, though its high computational 
requirements were noted [23]. 

• Random Forest (RF): While RF models provided solid 
predictions, particularly in larger datasets, they generally 
lagged behind ensemble methods like Gradient Boosting in 
terms of accuracy. Studies such as Liu et al. (2022) and 
Rahman et al. (2021) showed that RF models, though 
effective in certain scenarios, were prone to higher error 
rates when handling complex datasets and large feature 
spaces [9], [26]. RF's strength lies in its ability to handle 
overfitting better than simpler models, but it can 
underperform when compared to more advanced techniques 
like XGBoost. 

• Gene Expression Programming (GEP): GEP, as 
applied by Majidifard et al. (2020), provided interpretable 
models that elucidate the relationships between input 
variables and performance metrics, such as rut depth. This 
transparency made GEP attractive for engineers who require 

interpretable results [27]. However, GEP required precise 
parameter tuning, making it less effective for highly complex 
datasets or situations where rapid model development was 
needed. 

• Autoencoders (AE) and Dimensionality Reduction 
Techniques: In Liu et al. (2022), the combination of 
Autoencoders (AE) with Gaussian Process Regression 
(GPR) showed how dimensionality reduction can improve 
machine learning models by reducing input noise and 
computational complexity. AE-GPR outperformed models 
like SVR and RF by effectively managing high-dimensional 
data in predicting IRI, proving that reducing input space can 
lead to improved accuracy and efficiency [26]. 

• Self-Validated Ensemble Modeling (SVEM): While less 
commonly used, SVEM provided a balanced approach 
between accuracy and computational efficiency, especially 
for smaller datasets. In Mirzaiyanrajeh et al. (2023), SVEM 
was found to be more practical than ANN in predicting 
fracture energy for smaller datasets, offering reliable results 
with fewer computational resources [31]. However, its 
predictive capacity could be slightly lower than ANN in more 
complex scenarios. 

 
Table 1. Summary of machine learning applications in predicting asphalt mixture performance: overview of data collection 

methods, model types, and justifications for model selection across studies 
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2.2 Overall trends 
 

The studies reviewed consistently demonstrated that 
ensemble methods such as Gradient Boosting and XGBoost 
were the most effective in terms of both accuracy and 
robustness. These models were particularly useful in 
handling large datasets and complex, nonlinear relationships 
within asphalt mixture data. However, their high 
computational costs and complexity in hyperparameter 
tuning limited their practicality in some real-world scenarios. 
On the other hand, simpler models like SVM and ANN, while 
still effective in certain cases, struggled with overfitting and 
computational demands when faced with large, high-
dimensional datasets. GPR also proved highly effective, 
particularly for small to medium datasets, though it required 
substantial computational resources and careful tuning. 
Dimensionality reduction techniques such as Autoencoders 
(AE) and Principal Component Analysis (PCA) helped 
mitigate these issues by streamlining input features, 
improving the efficiency and accuracy of models like GPR 
and SVR. 

Finally, interpretability remains a key consideration, with 
methods like Gene Expression Programming (GEP) offering 
more transparent models than black-box approaches like 
ANN and XGBoost. This interpretability can be critical for 
engineers looking to understand the underlying relationships 
between variables and performance outcomes. 
3 Concrete property prediction and structural 

performance 

Machine learning (ML) models have become an essential 
tool in predicting concrete properties and optimizing 
structural performance, addressing the limitations of 
traditional empirical methods. This section explores various 
machine learning techniques applied to predict key concrete 
properties such as compressive strength, tensile strength, 
modulus of elasticity, and fracture energy. These studies 
demonstrate the advantages and disadvantages of different 
ML approaches in terms of prediction accuracy, 
computational complexity, and model interpretability. 

Song et al. (2022) applied machine learning models such 
as Artificial Neural Networks (ANN), Support Vector 
Machines (SVM), Decision Trees (DT), Random Forest (RF), 
and Gradient Boosted Regression Trees (GBRT) to optimize 
cementitious material mixtures. Input variables included 
water content, cement content, supplementary cementitious 

materials (SCMs), and aggregate content, while the outputs 
were uniaxial compressive strength (UCS) and durability. 
ANN excelled in capturing nonlinear relationships but 
required significant computational resources and careful 
tuning to avoid local minima. SVM performed well in 
generalization but was highly sensitive to hyperparameter 
tuning, and RF improved accuracy by reducing variance, 
though it came with higher computational costs. GBRT 
offered the highest accuracy in UCS prediction but increased 
computational complexity. Metaheuristic algorithms such as 
Particle Swarm Optimization (PSO) and Genetic Algorithms 
(GA) were used to optimize the model parameters and 
enhance the performance of the ML models [34]. 

Hafez et al. (2022) developed a machine learning 
regression model, Pre-bcc, to predict slump, compressive 
strength, carbonation, and chloride ingress resistance for 
blended cement concrete (BCC) using supplementary 
cementitious materials (SCMs) such as fly ash, ground 
granulated blast-furnace slag, silica fume, lime powder, and 
calcined clay. Input variables included SCM types and 
proportions. ANN, RF, and SVM models were tested, with 
RF showing better accuracy and interpretability, though 
computationally intense. SVM required careful tuning but 
handled generalization well. Pre-bcc offers high prediction 
accuracy for slump and strength but is computationally 
complex when handling multiple SCMs, improving the 
understanding of SCM effects in BCC [16]. 

Hafez et al. (2023) then introduced Opt-bcc, an 
optimization tool using Genetic Algorithms (GA) with Pre-bcc 
to optimize sustainability scores of blended cement concrete 
mixes. Input variables included various SCM types and 
proportions, while output variables were strength, slump, and 
durability indices. GA effectively minimized environmental 
and cost impacts but required complex tuning. Opt-bcc 
achieved significant cost and environmental reductions 
compared to existing models, though functional parameter 
prediction models were nonlinear, demanding higher 
computational resources. This study highlighted GA’s 
potential in eco-friendly concrete optimization while 
balancing functional and economic criteria [35]. 

Pfeiffer et al. (2024) utilized an amortized Gaussian 
Process (GP) model integrated with an inverse optimization 
framework to design concrete mixes minimizing climate 
impact and cost. Input variables were SCM proportions, 
water/cementitious material ratio, and aggregate 
composition, while the output variable was compressive 
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strength at 28 days. The GP model provided mean 
predictions and uncertainty estimates, making it more robust 
than traditional models like ANN and RF, which lack 
uncertainty measures. The GP's flexibility for industrial-scale 
datasets added accuracy, but computational demands were 
significant. This study demonstrated GP's effectiveness for 
mix design, balancing environmental and economic 
objectives with structural performance requirements [36]. 
Moein et al. (2023) reviewed several machine learning and 
deep learning models for predicting concrete properties, 
including SVM, ANN, Random Forest, and Extreme Learning 
Machines (ELM). The input variables included cement 
content, aggregate composition, water-cement ratio, and 
curing age. ANN showed high accuracy but was prone to 
overfitting without proper tuning, while SVM was more 
effective for smaller datasets but struggled with high-
dimensional data. ELM provided faster training times 
compared to ANN but at the cost of prediction accuracy. 
Genetic Algorithms (GA) were used to enhance model 
optimization when combined with other ML models. Random 
Forest and ANN were identified as the most reliable models 
for concrete property prediction, with RF offering better 
interpretability and ANN excelling in predictive performance 
[11]. 

Yu et al. (2018) compared an Enhanced Cat Swarm 
Optimization (ECSO)-optimized SVM model with traditional 
models like ANN and Extreme Learning Machines (ELM) for 
predicting the compressive strength of high-performance 
concrete (HPC). Input variables included water content, 
cement content, and supplementary materials. The ECSO-
optimized SVM model achieved superior accuracy (R² = 
0.9526), outperforming ANN (R² = 0.8716). While SVM 
required significant parameter tuning, ECSO improved the 
convergence rate and avoided local minima, making it more 
efficient. ANN, though effective, suffered from overfitting and 
was computationally expensive [37]. 

Pham et al. (2016) used a Least Squares Support Vector 
Regression (LS-SVR) model optimized by the Firefly 
Algorithm (FA) to predict the compressive strength of high-
performance concrete (HPC). Input variables included 
cement, aggregates, and curing conditions. FA-LS-SVR 
achieved the highest accuracy (R² = 0.89) compared to ANN 
and traditional SVM models. The optimized SVM model 
outperformed ANN by providing better generalization and 
reducing prediction errors. However, the model required 
careful tuning of parameters like penalty factors, making it 
computationally demanding [38]. 

Yaseen et al. (2018) used Extreme Learning Machines 
(ELM) to predict the compressive strength of lightweight 
foamed concrete, outperforming other models like 
Multivariate Adaptive Regression Splines (MARS) and M5 
Tree. Input variables included cement content, oven dry 
density, and foam volume. ELM achieved an R² of 0.875, 
making it the fastest model in terms of training speed, though 
it was less accurate for highly complex data. MARS and M5 
Tree provided reasonable accuracy but failed to capture 
complex relationships, while ELM's fast training and 
simplicity made it an efficient option for lightweight concrete 
strength prediction [39]. 

Omran et al. (2016) compared Gaussian Process 
Regression (GPR), Multilayer Perceptron (MLP), and 
Support Vector Machines (SVM) for predicting the 
compressive strength of environmentally friendly concrete. 
GPR outperformed the other models, achieving the highest 
accuracy (R² = 0.9842) and offering better generalization 
through its probabilistic approach. However, GPR was 
computationally intensive. Ensemble methods like Additive 

Regression and Bagging with GPR also provided high 
accuracy, while SVM and MLP required extensive parameter 
tuning to avoid overfitting. GPR was highlighted for its 
balance between accuracy and computational efficiency, 
making it a strong choice for concrete strength prediction 
[40]. 

Bonifácio et al. (2019) applied Support Vector 
Regression (SVR) and the Finite Element Method (FEM) to 
predict the compressive strength and Young's modulus of 
lightweight aggregate concrete (LWAC). SVR outperformed 
FEM slightly, achieving a lower deviation from experimental 
results (5.46% for compressive strength), with the key 
advantage being SVR's reusability with new data and speed. 
FEM, although slightly less accurate, required fewer inputs 
and was advantageous in cases where experimental results 
were scarce. SVR required a larger training dataset, making 
it more computationally intensive [10]. 

Tanyildizi (2018) applied ANN and SVM to predict the 
strength properties of carbon fiber-reinforced lightweight 
concrete exposed to high temperatures. Input variables 
included silica fume, carbon fiber content, and temperature. 
ANN achieved the highest accuracy (R² = 0.9902 for 
compressive strength), outperforming SVM (R² = 0.9701). 
While ANN offered superior predictive accuracy, it required 
more computational resources and careful optimization of 
hidden neurons and learning algorithms. SVM was simpler 
to use but less accurate, making it a better choice for smaller 
datasets [15]. 

Mozumder et al. (2017) used Support Vector Regression 
(SVR) to predict the uniaxial compressive strength of fiber-
reinforced polymer (FRP) confined concrete, achieving 
higher accuracy (R² = 0.9832 for CFRP) than ANN models 
and empirical methods. SVR's ability to avoid local minima 
and provide better generalization made it a more reliable 
method, though it required substantial computational effort 
and parameter tuning compared to ANN, which suffered from 
slower convergence and higher prediction errors [8]. 

Keshtegar et al. (2019) applied a hybrid RSM-SVR model 
to predict the shear strength of steel fiber-reinforced concrete 
beams (SFRCBs). The hybrid model outperformed ANN and 
other traditional methods, achieving an R² of 0.9508, thanks 
to its ability to capture nonlinear relationships and cross-
correlations between input variables. Although the hybrid 
model required significant computational power, it proved to 
be the most accurate for predicting SFRCBs shear strength, 
demonstrating the advantage of combining multiple 
modeling approaches [7]. 

Aiyer et al. (2014) compared Least Square Support 
Vector Machines (LSSVM) and Relevance Vector Machines 
(RVM) for predicting the compressive strength of self-
compacting concrete. RVM outperformed LSSVM and ANN, 
offering additional benefits such as handling variance and 
uncertainty. While LSSVM was accurate, RVM's ability to 
calculate variance made it a better tool for assessing 
uncertainty in predictions, especially in civil engineering 
applications [41]. 

Yuvaraj et al. (2013) applied SVR to predict fracture 
characteristics, such as fracture energy and failure load, of 
high-strength and ultra-high-strength concrete beams. The 
SVR model achieved high prediction accuracy (R² close to 1 
for all parameters), outperforming traditional empirical 
models. The SVR model's strength lay in its ability to handle 
nonlinear relationships even with limited datasets, though it 
required careful parameter tuning to optimize its predictive 
performance [42]. 

Yan & Shi (2010) used SVM to predict the elastic 
modulus of normal and high-strength concrete, 
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outperforming traditional empirical models. SVM achieved 
better accuracy with fewer parameters compared to 
empirical models, though it required careful tuning of kernel 
parameters. ANN, while effective, was more complex to tune 
and prone to local minima, making SVM the preferred model 
for this application [43]. 

Nazari & Sanjayan (2015) optimized SVM using Genetic 
Algorithm (GA), Particle Swarm Optimization (PSO), and 
other metaheuristic algorithms to predict the compressive 
strength of geopolymer concrete. The hybrid models, 
particularly the ICOA-SVM model, achieved superior 
prediction accuracy (R² = 0.8993), though they were 
computationally intensive due to the optimization process 
[44]. 

Deng et al. (2018) used Convolutional Neural Networks 
(CNN) to predict the compressive strength of recycled 
aggregate concrete (RAC), outperforming both 
Backpropagation Neural Networks (BPNN) and SVM in 
terms of accuracy and efficiency. CNN’s advantage was its 
ability to automatically extract deep features from input data 
without requiring manual preprocessing, though it was more 
computationally intensive [45]. 

Kaloop et al. (2019) compared LSSVM, ANN, and 
regression models to predict the resilient modulus (Mr) of 
recycled concrete aggregate blends. LSSVM achieved the 
highest accuracy (R² = 0.982), outperforming both ANN and 
regression models, particularly with smaller datasets, though 
it required careful tuning of regularization parameters [46]. 
Cheng et al. (2014) applied the Genetic Weighted Pyramid 
Operation Tree (GWPOT) to predict the compressive 
strength of high-performance concrete, outperforming ANN 
and SVM models. GWPOT provided interpretable 
mathematical formulas, offering better transparency, though 
it required higher computational resources for optimization 
[47]. 

Zhang et al. (2019) used Random Forest (RF) optimized 
with Beetle Antennae Search (BAS) to predict the uniaxial 
compressive strength of lightweight self-compacting 
concrete. BAS improved the hyperparameter tuning process, 
resulting in an R² value of 0.97, significantly outperforming 
traditional regression models. However, the computational 
complexity was higher due to the optimization process [48]. 
 
3.1 Summary of methods 
 

Table 2 provides a detailed summary of studies focusing 
on machine learning approaches and their applications in 
predicting concrete properties. In the reviewed studies, 
machine learning techniques were applied to predict 
concrete properties such as compressive strength, tensile 
strength, modulus of elasticity, and fracture energy, offering 
improvements in accuracy and efficiency over traditional 
empirical methods. The following methods were highlighted 
for their strengths and weaknesses: 

• Artificial Neural Networks (ANNs): ANNs were 
frequently applied in predicting nonlinear relationships in 
concrete properties, such as compressive strength and 
fracture energy. Studies like Tanyildizi (2018) and Song et al. 
(2022) demonstrated that ANNs performed well in capturing 
complex data patterns [15], [34]. However, ANNs often faced 
challenges such as overfitting and the need for large 
datasets, which made them computationally expensive. Yu 
et al. (2018) and Mozumder et al. (2017) further emphasized 
that proper tuning of hyperparameters, such as the number 
of hidden neurons and learning rates, is crucial to achieving 
high accuracy without overfitting [8], [37]. 

• Support Vector Machines (SVMs): SVMs were 
consistently highlighted as strong performers, especially 
when dealing with smaller datasets, as shown in Yu et al. 
(2018), Mozumder et al. (2017), and Yan & Shi (2010) [8], 
[37], [43]. SVM models excelled at predicting compressive 
strength, fracture characteristics, and elastic modulus, 
particularly when optimized using techniques such as 
Enhanced Cat Swarm Optimization (ECSO) and the Firefly 
Algorithm (FA) [37], [38]. These optimizations significantly 
improved convergence and accuracy. However, SVMs can 
be computationally intensive and sensitive to 
hyperparameter tuning, requiring careful selection of kernel 
functions. 

• Random Forest (RF): Random Forest models, applied 
in studies such as Song et al. (2022) and Zhang et al. (2019), 
were particularly effective in handling complex, high-
dimensional datasets [34], [48]. RF’s ability to reduce 
overfitting by averaging multiple decision trees made it a 
popular choice for predicting properties like compressive 
strength. Despite its robustness, RF models are 
computationally demanding and require tuning of 
hyperparameters such as the number of trees and depth to 
achieve optimal results. 

• Gradient Boosting and Boosted Regression Trees 
(GBRT): Gradient Boosting models were often the most 
accurate in predicting concrete properties, particularly in 
Song et al. (2022) where they excelled at predicting uniaxial 
compressive strength (UCS) [34]. These models effectively 
captured nonlinear relationships between variables but came 
at a high computational cost due to their iterative learning 
process. Gradient Boosting methods like XGBoost are 
powerful but require significant tuning to prevent overfitting, 
especially when dealing with large datasets. 

• Extreme Learning Machines (ELM): Yaseen et al. 
(2018) demonstrated that ELM models provided a fast and 
computationally efficient method for predicting concrete 
properties, particularly lightweight foamed concrete [39]. 
ELM's ability to train quickly made it useful for simpler 
datasets, but it lacked the accuracy of more complex models 
like RF and Gradient Boosting when dealing with high-
dimensional or intricate data. 

• Gaussian Process Regression (GPR): Omran et al. 
(2016) highlighted that GPR was highly accurate in 
predicting concrete compressive strength [40]. GPR’s 
probabilistic approach offered the added benefit of 
estimating uncertainty, which made it suitable for cases 
where confidence in the predictions was critical. However, 
GPR’s computational demands increase significantly with 
larger datasets, limiting its practicality for large-scale 
applications. 

• Least Squares Support Vector Machines (LSSVM): 
Enhanced versions of SVM, such as LSSVM, were applied 
in Pham et al. (2016) and Kaloop et al. (2019) to improve 
predictive performance and computational efficiency [38], 
[46]. LSSVM, optimized by metaheuristic algorithms like the 
Firefly Algorithm (FA), outperformed standard SVM and ANN 
models, especially in smaller datasets. However, LSSVM still 
required careful tuning of parameters like the regularization 
factor to achieve high accuracy. 

• Convolutional Neural Networks (CNNs): In Deng et al. 
(2018), CNNs were shown to outperform traditional models 
like SVM and Backpropagation Neural Networks (BPNN) 
when predicting compressive strength in recycled aggregate 
concrete [45]. CNNs excelled at automatically extracting 
deep features from raw data, which improved accuracy and 
reduced the need for manual feature engineering. However, 
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CNNs are computationally intensive and require large 
datasets to fully leverage their potential. 

• Hybrid Models (e.g., RSM-SVR, ANN-MOGWO): 
Hybrid models combining machine learning algorithms with 
optimization techniques, such as Keshtegar et al. (2019)’s 
RSM-SVR model, showed superior performance in 
predicting complex properties like shear strength [7]. These 

models combine the strengths of multiple techniques, 
improving accuracy by capturing nonlinearities and complex 
relationships between variables. However, hybrid models 
are computationally expensive due to the complexity of 
integrating multiple approaches. 

 
Table 2. Summary of Machine Learning Applications in Predicting Concrete Properties: Overview of Data Collection Methods, 

Model Types, and Justifications for Model Selection Across Studies 
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3.2 Overall trends 
 

The studies consistently demonstrated that ensemble 
methods like Random Forest and Gradient Boosting 
delivered the best performance in predicting concrete 
properties, excelling in handling high-dimensional datasets 
and capturing complex nonlinear relationships. However, 
these methods were computationally demanding and 
required careful tuning. 

Support Vector Machines (SVMs), particularly when 
enhanced with optimization algorithms, were effective for 
smaller datasets but required significant computational 
resources and careful parameter tuning. Artificial Neural 
Networks (ANNs) were highly accurate in capturing complex 
relationships but often suffered from overfitting and required 
large datasets and computational resources. 

Hybrid models, such as RSM-SVR and ANN-MOGWO, 
offered the highest accuracy by combining the strengths of 
multiple approaches, but their complexity and computational 
requirements made them more suitable for research 
applications. 

Convolutional Neural Networks (CNNs) and Gaussian 
Process Regression (GPR) were also strong performers, 
with CNNs excelling at feature extraction and GPR providing 
uncertainty estimates. However, both models required 
substantial computational power. 

In summary, ensemble methods and hybrid models 
proved to be the most accurate, while SVMs and ANNs were 
useful but required extensive tuning. The model choice 
ultimately depended on the dataset size, complexity, and 
available computational resources. 

4 Classification and pattern recognition in pavement 
systems 

Machine learning models, particularly unsupervised 
learning methods, have been instrumental in classifying 
pavement conditions, detecting cracks, and identifying 
patterns that are crucial for effective pavement management. 
Below is a detailed analysis of several studies using 
unsupervised models to address pavement-related 
problems. 

Shao et al. (2022) applied K-means clustering to classify 
pavement performance patterns based on long-term 
Pavement Condition Index (PCI) and Riding Quality Index 
(RQI) data. Their model classified pavement performance 
into five distinct patterns, facilitating the evaluation of road 
maintenance strategies. The key strengths of K-means were 
its simplicity and ability to process large datasets effectively. 
However, its requirement to predefine the number of clusters 
and its sensitivity to data with varying densities or missing 
values were major limitations, suggesting the need for more 
adaptive models to achieve greater accuracy [49]. 

Mathavan et al. (2014) used a Self-Organizing Map 
(SOM), an unsupervised neural network, to classify doweled 
concrete pavement joints based on Falling Weight 
Deflectometer (FWD) data. Input parameters included load 
transfer efficiency (LTE), void intercepts (VI), and absolute 
deflection (D). SOM classified the joints into three categories: 
good, marginal, and poor. The model achieved an accuracy 
of 65-70%, improving to 87.5% when only LTE and D were 
used, demonstrating the potential to reduce human 
inconsistencies in manual assessments. The pros of SOM 
include its ability to capture complex patterns and automate 
classification, though its slow training process and sensitivity 
to unbalanced data were notable drawbacks [50]. 

Mubashshira et al. (2020) employed K-means clustering 
to detect road surface cracks by segmenting 2D road surface 
images. After preprocessing to reduce noise, K-means was 
used for image segmentation, followed by Otsu thresholding 
and morphological operations to refine the detected cracks. 
The model achieved an average detection accuracy of 
97.75%, outperforming traditional edge detection methods 
by reducing false negatives. While K-means clustering was 
effective in handling noise and irregularities, its efficiency 
was limited by the reliance on post-processing steps, 
particularly for large-scale real-time applications [51]. 

Li et al. (2021) proposed a novel model that fused 
Convolutional Neural Networks (CNN) with K-means 
clustering for road crack classification. The input data 
consisted of crack images collected via automated vehicles 
and smartphones, and the model classified crack types—
transverse, longitudinal, and alligator cracks—with 
accuracies of 80.6%, 79.2%, and 91.3%, respectively. The 
fusion of CNN and K-means allowed for iterative refinement 
of clustering assignments, reducing the need for manually 
labeled data. However, the model faced challenges due to 
its high computational cost during training and the need for 
extensive optimization [52]. 

Golmohammadi et al. (2024) combined PCA and 
DBSCAN for anomaly detection in pavement health 
monitoring using Fiber Bragg Grating (FBG) sensors. The 
system processed strain and temperature data to detect 
structural anomalies in pavement layers. DBSCAN 
effectively distinguished between normal and abnormal 
patterns without labeled data, demonstrating high accuracy 
in anomaly detection. The system, however, was sensitive to 
sensor placement and required considerable computational 
resources for continuous monitoring [53]. 

Abdelmawla et al. (2021) utilized PCA and K-means 
clustering to classify pavement cracks from 1,125 road 
surface images. The input images were preprocessed with 
edge detection and morphological operations, followed by 
dimensionality reduction using PCA and clustering using K-
means. The study identified three clusters: multi-directional 
cracks, longitudinal cracks, and images without cracks. PCA 
reduced dimensionality, improving computational efficiency, 
but struggled with nonlinear relationships in the data. K-
means effectively classified the cracks, although it was 
sensitive to initial cluster assignments [54]. 

Dong et al. (2021) classified climatic regions for 
pavement systems using PCA and K-means clustering. Input 
data from the Long-Term Pavement Performance (LTPP) 
database included 16 climate variables. Four primary 
clusters—wet no freeze, dry no freeze, dry freeze, and snow 
freeze—were identified, and results from Artificial Neural 
Networks (ANN) and Fisher’s linear discriminant analysis 
were compared. ANN achieved higher prediction accuracy 
than discriminant analysis, though ANN required more tuning 
and computational power. K-means clustering proved 
efficient for handling large datasets, though the need to 
predefine clusters remained a limitation [55]. 

Shi et al. (2024) applied K-means clustering to analyze 
Acoustic Emission (AE) data from epoxy asphalt mixtures 
with varying crumb rubber (CR) content. Four damage 
modes were identified: cohesive cracking, aggregate-asphalt 
interface cracking, aggregate fracture, and aggregate 
friction. The model effectively classified AE signals and 
demonstrated that 4% CR content was optimal for balancing 
toughness and strength. However, the model’s sensitivity to 
initial cluster selection and overlapping clusters presented 
challenges, especially when dealing with highly correlated 
data [56]. 
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Akhtar et al. (2020) implemented a parallel K-means 
clustering model to assess adhesion failure in Warm Mix 
Asphalt (WMA) through high-resolution image processing. 
The model reduced execution time by 30-46% compared to 
sequential K-means clustering, improving the detection of 
adhesion failure. Although the parallel model handled large 
image datasets more efficiently, its complexity and sensitivity 
to initial cluster centers posed challenges during 
the implementation [57]. 

Sahari Moghadam et al. used K-means clustering in 
conjunction with k-nearest neighbors (KNN) and support 
vector machines (SVM) to classify asphalt coating conditions 
in loose mixtures. The input images from static immersion 
tests were segmented using K-means, followed by 
classification using KNN and SVM. The model improved 
classification accuracy by reducing human bias, though it 
was sensitive to image quality and relied on robust 
preprocessing steps to ensure accuracy [58]. 
 
4.1 Summary of methods 
 

Table 3 provides a detailed summary of studies focusing 
on machine learning approaches and their applications in 
classification and pattern recognition for pavement systems. 
Unsupervised learning techniques, particularly clustering 
and pattern recognition methods, have been extensively 
applied in pavement system classification and anomaly 
detection. Here’s an overview of the key methods: 

• K-means Clustering: Widely used for classifying 
pavement performance patterns, crack detection, and 
assessing asphalt coating conditions (Shao et al., 2022; 
Akhtar et al., 2020). Its simplicity and efficiency in handling 
large datasets are advantageous, but it often struggles with 
predefined cluster requirements and sensitivity to initial 
conditions [49], [57]. 

• Principal Component Analysis (PCA): Commonly 
paired with K-means for dimensionality reduction, PCA 
improved computational efficiency in multi-dimensional data 
applications like crack classification and climate region 
analysis (Abdelmawla et al., 2021; Dong et al., 2021) [54], 
[55]. However, PCA's linearity limits its ability to capture 
complex relationships. 

• Self-Organizing Maps (SOM): Used for classifying 
pavement joint conditions (Mathavan et al., 2014). SOM 
excels at handling high-dimensional data but has a slow 
training process and reduced accuracy with unbalanced 
datasets [50]. 

• Convolutional Neural Networks (CNN): When 
combined with K-means, CNN was effective for road crack 
classification, automating feature extraction and improving 
classification performance (Li et al., 2021). The downside is 
its high computational cost and complexity in optimization 
[52]. 

• DBSCAN: Applied for anomaly detection in pavement 
monitoring systems (Golmohammadi et al., 2024), DBSCAN 
is effective in handling unlabelled data, though sensitive to 
sensor placement and computationally intensive in 
continuous monitoring [53]. 

• Parallel K-means Clustering: Enhanced efficiency in 
large-scale image processing tasks by reducing execution 
time (Akhtar et al., 2020). However, its implementation is 
complex, particularly when managing communication 
between computing nodes [57]. 

• K-means with Supervised Classifiers (KNN, SVM): 
Combining K-means with KNN or SVM improved accuracy in 
tasks like asphalt coating assessment but required high-
quality image data for optimal performance (Sahari 
Moghadam et al.) [58]. 

 
Table 3. Summary of machine learning applications in classification and pattern recognition in pavement systems: overview 

of data collection methods, model types, and justifications for model selection across studies 
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4.2 Overall trends 
 

K-means clustering emerged as a dominant method for 
its simplicity and effectiveness in pavement performance 
analysis, but it often required careful parameter tuning and 
was limited by predefined clusters. PCA was valuable for 
dimensionality reduction but struggled with nonlinearity. 
SOM and DBSCAN offered robust classification and 
anomaly detection in high-dimensional and sensor data, 
respectively, though at the cost of computational efficiency. 

The combination of CNN with K-means showed promise 
in handling complex, image-based data, albeit with high 

computational demands. Parallel implementations, like 
Parallel K-means, improved processing times but introduced 
complexity in deployment. Hybrid models combining 
unsupervised and supervised techniques, such as K-means 
with KNN and SVM, offered higher accuracy but depended 
on data quality and preprocessing efforts. 

Table 4 below provides a concise summary of the 
machine learning methods applied across various studies in 
asphalt mixture performance, concrete property prediction, 
and pavement classification. It outlines the key advantages 
and disadvantages of each method, complementing the 
trends discussed in the preceding sections. 

 

https://github.com/juhuyan/CrackDataset_DL_HY
https://github.com/juhuyan/CrackDataset_DL_HY
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Table 4. Summary of machine learning methods, advantages, and disadvantages across pavement and concrete 
applications 

Method 
Category 

Advantages Disadvantages 
A C P 

Artificial Neural Networks 
(ANNs) 

× ×  
Captures complex nonlinear relationships 
High accuracy in predicting performance 

metrics 

Computationally intensive 
Prone to overfitting 

Requires large datasets 

Support Vector Machines 
(SVMs) 

× ×  
Handles nonlinear relationships well 

Effective with smaller datasets 

Sensitive to parameter tuning 
Computationally expensive for 

large datasets 

Gradient 
Boosting/XGBoost 

× ×  
High accuracy and handles complex 

nonlinear relationships 
Regularization avoids overfitting 

Requires significant computational 
power 

Complex tuning required 

Random Forest (RF) × ×  
Good interpretability and robust handling 

of overfitting 

Less accurate compared to 
ensemble methods 

Computationally expensive 

Gaussian Process 
Regression (GPR) 

× ×  
Provides accurate predictions and 

uncertainty estimates. Handles complex 
nonlinear relationships well 

Computationally demanding. 
Requires careful tuning of 

hyperparameters 

Gene Expression 
Programming (GEP) 

×   Offers transparent, interpretable models 
Requires precise tuning 

Limited for large and complex 
datasets 

Hybrid Models (e.g., SVM 
with optimization) 

× ×  
Optimizes parameter selection 

Improves prediction accuracy and model 
convergence 

Computationally intensive 
Requires additional resources for 

optimization algorithms 

Self-Organizing Maps 
(SOM) 

  × 

Captures complex patterns in high-
dimensional data 

Reduces inconsistencies in manual 
classification 

Slow training process 
Struggles with unbalanced 

datasets 

DBSCAN   × 
Effective in anomaly detection with 

unlabelled data 
Handles noisy data 

Sensitive to sensor placement 
Computationally intensive for 

continuous monitoring 

Convolutional Neural 
Networks (CNN) 

  × 

Automatically extracts deep features from 
images 

Highly effective for image-based crack 
detection and classification 

High computational cost 
Requires extensive optimization 
and tuning of hyperparameters 

Parallel K-means   × 
Reduces execution time by 30-46% 

Efficient for large-scale image processing 

Complex implementation 
Communication overhead 

between nodes 

K-means Clustering   × 
Simple and efficient for large datasets 

Effective in crack detection and pavement 
classification 

Requires predefined cluster 
number 

Sensitive to initial conditions and 
varying densities 

Principal Component 
Analysis (PCA) 

  × 
Reduces dimensionality, improving 

computational efficiency 
Limited by linearity, struggles with 

complex relationships 

Note: A is Asphalt Mixture Performance and Optimization, C is Concrete Property Prediction and Structural Performance, P is 
Classification and Pattern Recognition in Pavement Systems 

 
 
5 Conclusion 

This literature review examines the application of 
machine learning techniques in material testing across three 
key areas: asphalt mixture performance, concrete property 
prediction, and classification and pattern recognition in 
pavement systems. The studies demonstrate the significant 
potential of machine learning to improve prediction accuracy, 
optimize material design, and reduce reliance on costly 
experimental testing. 

Across all categories, models such as Artificial Neural 
Networks (ANNs), Support Vector Machines (SVMs), 
Random Forests (RF), Gradient Boosting (GB), Gaussian 
Process Regression (GPR), and Convolutional Neural 
Networks (CNN) show strong predictive capabilities for 
complex material behaviors. While ANN and SVM models 

are effective for smaller datasets, ensemble methods like GB 
and RF excel in handling larger, nonlinear data sets but are 
computationally expensive. GPR stands out for its ability to 
model complex relationships and provide uncertainty 
estimates, particularly in small to medium datasets, though it 
requires extensive tuning and computational power. Deep 
learning methods, such as CNN, extract deep features 
without manual preprocessing but require significant 
computational resources. 

In classification and pattern recognition, unsupervised 
models, especially K-means clustering, are frequently 
applied for pavement condition classification and crack 
detection. Principal Component Analysis (PCA) is often used 
for dimensionality reduction, improving model efficiency but 
facing challenges with nonlinearity. Advanced techniques 
such as DBSCAN and CNNs are gaining traction for anomaly 
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detection and feature extraction but require extensive 
computational power and proper parameter tuning. 

In general, machine learning models are effective tools in 
material testing and performance prediction, offering 
flexibility and accuracy, though computational complexity 
and data quality remain key challenges. 
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A r t i c l e  h i s t o r y  A B S T R A C T  

As an alternative to trusses and open-web joist systems, beams with web openings 
are lightweight, long-spanning structural elements that bind structural role (efficient 
load distribution) and functionality in a visually acceptable way by allowing service 
routes to be installed within their cross-section height. Owing to its specific 
production process, this beam type has a beneficial impact on rational use of 
material for low-carbon structures. In recent years, extensive scientific research has 
been conducted to assess the structural behavior and ultimate capacity of beams 
with web openings. Due to the presence of web openings, load transfer is 
accompanied by complex stress distributions in the section web, causing failure 
modes that are distinguishable from those of solid I-section beams. This paper 
summarizes the different failure modes of the beams with web openings that have 
been discovered and confirmed in numerous experiments of reference scientific 
researches. Based on the state-of-the art in this structural area, the predictions of 
different failure modes that are affected by influencing geometric parameters are 
provided. 
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1 Introduction 

Steel floor structures consisting of solid beams often 
require the formation of large web openings for the transit of 
service ducts. Economical solutions, which integrate 
installation routes within beam cross-section height (see 
Figure 1a), should include simple design, automated 
fabrication methods and minimum costs. The costs can be 
further minimized if it is shown that no stiffeners 
(reinforcements) are required; if this is not possible, simple 
stiffener configurations are required that allow 
straightforward manufacturing. Compared to conventional 
steel structures, the beams with web openings possess a 
better strength-to-weight ratio, classifying them as 
lightweight and long-span structural components. To 
maximize efficiency, they are most commonly used in 
composite structures [1,2]. Additionally, they can be applied 
in non-composite structures as beams, slender columns, or 
cantilever elements [3–6]. Beyond structural advantages, 
these elements are also appreciated for their attractive 
appearance. The most common opening shapes are 
hexagonal and circular. Beams with hexagonal openings are 
called castellated beams, while those with circular openings 
are referred to as cellular beams. Cellular beams exhibit the 
highest load-bearing capacity but also result in the greatest 
material waste among other shapes configurations [7]. 
However, the introduction of the Angelina beam, featuring 
sinusoidal shaped openings, achieves a balance, providing 
sufficient capacity while optimizing material usage. Other 
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shapes such as rectangular, oval, and octagonal can also be 
utilize.   

The manufacturing process of steel structural elements 
with web openings consists from three stages (see Figure 
1b): (1) flame cutting of a solid hot-rolled I-section beam 
along a specified path determined by the opening shape; this 
results in two Tee sections that are (2) subsequently 
separated, (3) re-assembled, and welded together [8]. 
Castellated beams are fabricated by using a computer-
controlled cutting torch to cut a zigzag pattern along the 
section web, whereas cellular beams are fabricated in a 
similar manner using a nested semicircular cutting pattern. 
The waste at the ends of the beam (castellated and circular) 
and along semicircular pattern (circular) is removed. Through 
this process, the parent I-section can achieve a significant 
increase in flexural stiffness without any increase in weight. 
Moreover, welded I-section beams with web openings can 
enable efficient hybrid structural compositions by rationally 
using different geometries and/or steel grades for the cross-
section elements (parts). Additional material savings, up to 
40%, can be achieved using corrugated webs instead of flat 
webs [9]. 

As part of second generation of the Eurocodes, new code 
EN 1993-1-13 [10] will provide supplementary provisions and 
design rules that extend the application of EN 1993-1-1 [11] 
and EN 1993-1-5 [12] to the design of rolled and welded steel 
sections with various shapes of web openings. The design of 
beams with web openings is also addressed in American 
national standard, AISC Steel design guide 31 [13].  
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(a) application in floor structures  (b) fabrication process 

Figure 1: Steel beams with web openings  
 

 

Figure 2: Definition of terms commonly used for beams with web openings 
 
 

The failure modes of beams with web openings are 
diverse and influenced by load distribution, structural solution 
of floor structure (composite or non-composite), boundary 
conditions, steel grade, beam span (length), opening 
parameters (opening shape, dimensions and spacing), 
cross-section parameters (beam depth, flange width-to-
thickness ratio and web thickness) and stiffener geometry 
and position. The collapse mechanism is not uniform and can 
include the multi-failure mode interactions.  

The interaction between the failure modes and the 
mechanical properties of beams with web openings has been 
extensively investigated. The history of experimental tests 
reaches back to the 1940s, particularly emphasizing studies 
on castellated beams with hexagonal openings. Today, 
research databases have expanded to include various 
opening shapes, parent I-sections, and steel grades.  

This paper briefly summarizes the key finding of 
experiments conducted on beams with web openings, with a 
focus on failure mode identification. The aim is to define the 
limit ranges for cross-section and opening parameters that 
affect a particular (specific) failure mode. 

2 Failure modes  

In the case of beams with web openings, localized 
internal forces are developed both around the openings and 
at the web posts (part of the web between adjacent 
openings); therefore, additional failure modes can occurre 
beyond those which are common for conventional solid web 
beams. In general, failure modes are categorized into those 
related to loss of cross-section strength and stability (local 
failure mode), and those related to loss of overall beam 
stability (global failure mode). Common local failure modes 

include shear and flexural failure, Vierendeel mechanism, 
buckling of the compressed Tee section, and failure of the 
web-post due to bending, shear, and compression. The 
global failure mode that can occur is lateral-torsional 
buckling. 

 
2.1 Local failure modes 

 
Characteristic local failure modes that occur (localized) 

around openings and web posts are shear failure, flexural 
failure, Vierendeel mechanism failure, yielding or local 
buckling of Tee sections (flange and web), web post 
buckling, local web buckling. The failure modes related to 
shear and moment resistance, already familiar in case of 
solid I-sections, are altered due to the presence of the 
openings.  

When openings are positioned near beam supports or 
loading points, or when widely spaced openings (between 
transverse stiffeners) are present, web vertical shear failure 
(in opening area) can occur. In the post-peak regime, when 
the shear capacity of the web post is exceeded, the failure 
pattern is featured by a diagonally formed buckle around the 
opening, as illustrated in Figure 3a. The vertical shear, 
caused by the global shear force, should be resisted by the 
net cross-section at each web openings, or the gross section 
at web posts. 

The flexure mechanism is characterized by noticeable 
vertical deflection [14–17] and the yielding of the top and 
bottom Tee sections (primarily flanges) in the critical cross-
section under the action of extreme bending moments, see 
Figure 3b. The failure mode can also be accompanied by 
local buckling of the wide flange of the beam (compressed 
Tee section). Hence, the yielding pattern is similar to that of 
a beam with solid I-section. 
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(a) Shear failure (b) Flexure mechanism (c) Vierendeel mechanism 

   
(d) Tee buckling (e) Web-post buckling (f) Rupture of the welded joint 

Figure 3: Local failure modes of beams with web openings under bending (adapted from [36]) 
 
 

The structural behaviour of beams with web openings 
under bending is usually explained through the Vierendeel 
analogy: the design approach involves an integral model 
consisting of individual horizontal components (Tees around 
the openings) and individual vertical components (web posts 
between the openings). The presence of web openings alters 
stress distributions around them, making the critical sections 
approximately at the opening corners [18]. Under a global 
moment and a global shear force, three local actions are 
induced in the Tees above and below the web opening: (i) 
axial force in the Tee section, due to the global moment, (ii) 
shear force in Tee section, due to the global shear force, (iii) 
local Vierendeel moment in the Tee section, due to the 
transfer of shear force across the opening length. The high 
stress interaction leads to the yielding of Tee sections and 
the formation of four plastic hinges, above and below the web 
opening, see Figure 3c. This failure mechanism is known as 
the Vierendeel mechanism [19]. Vierendeel mechanism is 
critical in beams with single large web openings or widely 
spaced web openings [20]. In composite beams, Vierendeel 
bending distribution is similar to that in non-composite 
beams. Composite action results in smaller forces in the 
Tees, resulting in a more favourable structural response [21–
24]. However, at web openings near the ends (supports) of 
the beams, the composite action provides lower strength due 
to the limited number of studs between the end of the beam 
and the end opening. As a result, the concrete transmits less 
internal forces, and the Tee sections transmits the greater 
internal forces which should be taken into account during 
design.  

In the case of thin-webbed beams with openings of a 
smaller height, the yielding of deeper Tee section under 
compression in Vierendeel action can be limited by its 
instability leading to different failure mode known as buckling 
of Tee section web. The local buckling of the Tee section 
web may cause torsional deformations of the Tee section 
flange, see Figure 3d. The mode of failure is dependent on 
the geometrical dimensions (slenderness) of Tee sections. 
Additionally, this type of failure may affect the load-carrying 
capacity of castellated beams made of high-strength steel 

[25]. To avoid plastic deformations and local yielding around 
the openings, the webs of the Tee sections can be reinforced 
with additional stiffening [26–28]. The research shown that 
long horizontal stiffeners provide the better section 
strengthening compared to framed and vertical ones [29].  

Web post buckling is caused by the horizontal shear force 
passing through the web post. The failure of the web post is 
governed by one of three modes: (i) flexural failure caused 
by the development of a plastic hinge in the web post, (ii) 
buckling failure of the web post (see Figure 3e) and (iii) 
rupture of the welded joint (see Figure 3f). The mode of 
failure is dependent on the geometry and the thickness 
(slenderness) of the web post [30–35].  
 
2.2 Global failure modes 

 
The lateral-torsional buckling failure of beams with web 

openings under pure bending is similar to that of the 
equivalent beams with solid web [37,38]; in this case, the 
openings have less effect on the ultimate structural 
response, see Figure 4a. The failure mode is characteristic 
of narrow flanged beams with insufficient lateral stiffness 
[39], or when lateral stability within the length of the beam is 
not provided by sufficient lateral restraints to the 
compression flange. Along with lateral-torsional buckling, 
web distortion can occur, leading to a combined failure mode 
known as lateral-distortional buckling [40], see Figure 4b. 
 
2.3 Review of research on failure modes  

 
Structural behaviour and ultimate response (failure 

modes) of beams with web openings have been extensively 
investigated over the past years. Initially, research focused 
on castellated beams, and later it expanded to include 
different shaped openings. Table 1 provides a summary of 
the gathered database for failure modes occurred in steel 
beams with web openings under pure bending moment. The 
collected database covers a wide range of cross-section and 
opening parameters, structural steels and numbers of tests. 
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(a) Lateral-torsional buckling (b) Lateral-distortional buckling 

Figure 4: Global failure modes of beams with web openings under bending (adapted from [36]) 
 

Table 1: Summary of research on failure modes of beams with web openings   

Reference E / FE 
Load 
type 

Number 
of tests 

Failure modes 

 Castellated beams with hexagonal openings 

Altfillisch, Cooke and Toprac, 1957. [41] E 2P 2 TB  

Toprac and Cooke, 1959. [42] E 2P 8 VM, TB, LTB 

Sherbourne, 1966. [43] E 
1P 
2P 

1 
5 

FM, WPB, FM + LTB 

Bazile and Texier, 1968. [44] E U 6 WB, LTB, WPB 

Hussain and Speirs, 1971. [45] E 
1P 
2P 

4 
2 

WR 

Hussain and Speirs, 1973. [46] E 
1P 
2P 

6 
3 

FM, WB, VM 

Zaarour, 1995. [47] E 1P 4 WPB, TB, LTB 

Redwood and Demirdjian, 1998. [35] E 1P 4 WPB 

Zirakian and Showkati, 2006. [48] E 1P 6 LDB 

Ellobody, 2011. [49] FE 1P 96 LTB, LDB, WD 

Sonck and Belis, 2016. [50] E 2P 3 LTB 

Weidlich, Sotelino and Gardoso, 2021. [51] FE 1P 17 LTB, TB, FM 

Morkhade and Gupta, 2022. [52] FE 1P 6 VM, WPB + VM 

Tas, Erdal, Tunca and Ozcelik, 2024. [53] E 
1P 
2P 
U 

1 
1 
1 

VM, WPB 

 Cellular beams with circular openings 

Redwood and McCutcheon, 1968. [54] E 
1P 
2P 

7 
2 

FM, VM 

Surtees, 1995. [55] E 1P 1 WD + WPB 

Warren, 2001. [56] E 
1P 
2P 

4 
3 

VM, FM 

Tsavdaridis, D'Mello and Hawes, 2009 [57] E 1P 2 WPB +FM 

Tsavdaridis and D'Mello, 2011. [58] E 1P 2 WPB 

Ellobody, 2012. [59] FE 1P 120 
LTB, LDB, WPB + WD, LDB + WPB, LTB 
+ FM 

Erdal and Saka, 2013. [60] E 1P 4 LTB, WPB, VM + WPB 

Lawson, Basta and Uzzaman, 2015. [61] E 1P 7 WPB, WPB + TB 

Sonck and Belis, 2015. [62] E 2P 3 LTB 

Morkhade and Gupta, 2017. [63] E 1P 6 WPB, WPY, VM + WPB, TB + LTB 

Ferreira, Rossi and Martins, 2019. [64] FE 
1P 
U 

180 
180 

LTB, LDB, WPB, VM 

Morkhade and Gupta, 2022. [52] FE 1P 7 VM, WPB + VM 
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Abbas, 2023. [65] E 1P 5 FM 

Tas, Erdal, Tunca and Ozcelik, 2024. [53] E 
1P 
2P 
U 

1 
1 
1 

VM, WPB 

E – experiments; FE – finite element analysis; 1P – one point load; 2P – two points load; U – uniform distributed load; FM – 

flexure mechanism; VM – Vierendeel mechanism; WB – web buckling (shear failure); WPB – web-post buckling; WPY – web-

post yielding; WR – weld rupture; WD – web distortion; TB – local Tee buckling; LTB – lateral-torsional buckling; LDB – lateral-

distortional buckling 
 
 

In addition to the experimental tests and numerical 
analysis performed on simple beams with circular and 
hexagonal openings (as listed in Table 1), a comparatively 
smaller number of study have been carried out on beams 
with sinusoidal [18,53,66–71], rectangular openings 
[4,52,54,63,72,73] and other shapes such as oval and 
octagonal [74–81].  

3 Influence of different parameters on failure modes 

Different parameters can result in different failure modes. 
Based on the knowledge and experience gained through 
numerous experimental tests, it is possible to predict the 
most common failure mode that will occur in a particular 
case. For example, short-length beams with web openings 
can experience high shear forces, leading to web buckling or 
vertical shear failure, particularly near supports. Mid-length 
beams can exhibit Vierendeel bending and web post 
buckling. Long-length beams are more susceptible to global 
lateral-torsional buckling. 

The collected database is made according to Table 1 and 
is limited to the domain of simple I-section beams with 
unstiffened openings, due to the number of available 
experiments in this field. It includes information on various 
parameters such as steel grade, beam length, cross-section 
dimensions and slenderness, opening parameters, and 
additional details on lateral bracings and web stiffeners.  

Morkhade and Gupta [63] highlighted that adopting 
spacing-to-diameter ratio of circular openings (s/bo according 
to Figure 2) in the range of 1.5 to 2.0 can provide enough 
web post width to achieve vertical shear resistance. 
However, there are tested specimens with hexagonal and 
circular openings where web post buckling occurs for 
spacing-to-diameter ratios such as 1.47, 1.6, 2, and 2.5 
[46,52,60]. It is worth noting that to prevent web post 
buckling, beside adequate s/bo ratio, the transverse 
stiffeners should be provided at the supports and load point. 
Morkhade and Gupta [63] also noted that web post buckling 
failure modes are predominant when (s/bo) was between 
1.07 and 1.4; in these cases, beams can fail by web post 
buckling before the Vierendeel mechanism occurred 
(featured by formation of four plastic hinges around the 
openings) [52]. Another group of authors [82] likewise 
observed and noted that buckling generally occurred when 
the spacing ratio s/bo was equal to 1.2. Based on numerous 
studies [41-53], predictions can be made using edge-to-edge 
spacing-to-opening height ratio (sw/ho). For circular and 
hexagonal openings, web post buckling occurred when  sw/ho 
is less than 0.3. For higher values of this ratio, Vierendeel 
failure take place.  When close to limit value, determining 
factor is not clear. The long-length beams can be more 
susceptible to Vierendeel mechanism before web-post 
buckling. In some cases, where web between openings is not 
slender and ho/dw ratio does not exceed 0.8, mid-length 

beams failed due to flexure mechanism before web post 
buckling.  

For long-length beams, where Lcr/H ratio (where Lcr is 
length between lateral bracings) is higher than approximately 
7, a global failure mode is more likely to occur, regardless of 
the openings’ size. Sweedan [83] revealed that widely 
spaced web opening configurations provide higher shear 
stiffness, resulting in minute or no web distortion. In this 
case, the beam failure is governed by lateral buckling (LTB 
or LDB) modes [83]. However, web distortion is found to be 
dominant even for widely spaced openings in cases where 
Tee section web is very slender [49]. Whether global lateral 
instability or web distortion occurs depends on the web 
slenderness at the opening. When dt/tw is 25 or higher, web 
distortion occurred without any lateral movement [49]. For 
less slender Tee section web, with a dt/tw of about 13, the 
failure mode is governed by lateral displacement. The 
smaller the difference between the slenderness of the web 
and the flange, the greater the chance for lateral-torsional 
buckling without any web distortion.  

In case of very slender beams (L/H > 18, where L is beam 
length), if sufficient lateral bracings are provided, rupture of 
welded joint will take place before flexure mechanism or web 
post buckling. Otherwise, in case of short-span beams with 
a shallow tee depth, such as h0/dw equal to 0.8 or higher, 
Vierendeel failure is generally observed [82]. In such cases, 
yielding in the tees around opening may occur prior to 
buckling in the web-post. Nevertheless, plastic deformations 
may begin in the web-posts and spread to the tee sections, 
potentially leading to a combination of Vierendeel and web-
post buckling failure modes. Notably, only a few 
experimental studies have investigated this specific opening 
geometry, particularly with h0/dw ratios of 0.8 and higher. 
Four studies were conducted by Morkhade and Gupta [63] 
which focused on a single point load where web-post 
buckling occurred. In contrast, Toprac and Cooke [42] 
carried out one study under two points load, resulting in 
Vierendeel failure. 

As shown in Table 1, shear failure is less common in 
these structural elements. This may be because there is 
sufficient space between the supports and the first opening, 
allowing for full web engagement in shear transfer at the 
location of maximum shear force, and the bigger issue is the 
interaction between other inner forces leading to Vierendeel 
or web-post buckling failures. Notably, some literature does 
not even mention this failure type [36]. However, the shear 
failure with the buckle around the opening, as illustrated in 
Figure 3a, was captured in experimental tests that had been 
conducted by Lian and Shanmugam [84].  

The presence of irregular openings that are offset from 
the beam axis can significantly enhance the buckling 
capacity of tees; however, it may also reduce the buckling 
capacity of the adjacent web post [85,86]. 

Table 2 summarizes expected failure modes considering 
different cross-section and opening parameters, as 
explained above, where: 
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Table 2: Predicted failure modes for s/bo ≤ 1.5 

Lcr/H < 7 Lcr/H > 7 

sw/ho < 0.3 

sw/ho > 0.3 

dt/tw < 25 

dt/tw > 25 
ho/dw > 0.8 

ho/dw < 0.8 ** 
λw/λf < 7 λw/λf > 7 

W K1-3* W K4* 

WPB/VM FM WPB VM LTB LDB WD 

FM – flexure mechanism; VM – Vierendeel mechanism; WPB – web-post buckling; WD – web distortion; LTB – lateral-torsional 
buckling; LDB – lateral-distortional buckling 
* Web classification according to prEN 1993-1-13 [10]; For example, W K1-3 stands for web class one to three 
**For large-span beams (L/H > 18, where L is the total beam length), failure is characterized by weld rupture. Otherwise, the 
failure type depends on the web slenderness according to Table 2. 

 
 

λw is web slenderness dw/tw, 
λf  is flange slenderness bf/tf. 
Table 2 refers to beams with circular and hexagonal 

openings as well as to beams with transverse stiffeners at 
the supports and load points. If there are no adequate 
stiffeners, web post buckling can occur at higher values of 
sw/ho than specified in Table 2. All parameters are in 
accordance with Figure 2.  

Although the use of beams with web openings is 
becoming more commonplace and there is a growing body 
of scientific literature on the topic, there are very few 
technical publications that include comprehensive design 
recommendations (there is small amount of data available 
for different steel grades and load types, such as pure axial 
compression [87–91] or axial force–bending moment 
interaction [92]). Meanwhile, research results are being 
incorporated into code documents as conclusive design 
methods become available. As part of second generation of 
the Eurocodes, new code EN 1993-1-13 [10] which provides 
design rules for the design of I-section beams with web 
openings, is due to be published within the next three years 
in Europe. 

4 Conclusions 

Numerous research projects that aim at accounting for 
the post-ultimate strength degradation of steel beams with 
web openings have been undertaken to achieve the 
objectives: (i) to determine and quantify the influencing 
parameters (for e.g. opening shape and rates, beam depth, 
flange width-to-thickness ratio and web thickness) on the 
particular failure mode, (ii) to develop new or improving the 
available design rules predicting the ultimate strength based 
on failure mode with high accuracy and reliability, and thus 
achieve the full efficiency of these structural elements. 

The prediction and analysis of failure modes in I-section 
beams with unstiffened web openings, as discussed in this 
paper, highlight the intricate interactions among various 
geometric parameters. Key factors such as beam length, 
opening spacing, slenderness ratios, and web-flange 
interactions play a critical role in determining the 
manifestation of failure, whether it is local buckling, 
Vierendeel mechanisms, or global instability. While short 
beams are more susceptible to shear-related failures, long 
beams typically exhibit lateral-torsional or distortional 
buckling, particularly when the compressed flange lacks 
adequate stabilization. Furthermore, opening configurations 
— including spacing-to-diameter ratios and edge-to-edge 
spacing ratios — significantly impact the buckling behavior 
of web posts and the limits for Vierendeel failure. These 

findings underscore the importance of carefully balancing 
design parameters to mitigate failure risks and enhance 
beam performance. The specific threshold values and critical 
relationships, as outlined in this research, are presented in 
tabular form, providing practical insights and a concise 
reference for engineers and researchers. Future 
experimental investigations on less-studied parameters, 
such as irregular opening geometries and h0/dw ratios above 
0.8, are essential to further refine predictive models and 
broaden design applications. 
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A r t i c l e  h i s t o r y  A B S T R A C T  

Seismic risk assessment at the city scale has always been useful for pre-earthquake 
planning, managing future investments, and prioritizing the seismic repair and 
retrofit of existing buildings immediately after the earthquake. It is carried out by 
combining hazard, exposure, and vulnerability models. Exposure in this context, 
refers to the elements at risk: population, buildings, lifeline systems, or socio-
economic activities. Risk assessment analysis for different regions and cities 
worldwide shows that exposure and vulnerability are key elements for effective risk 
assessment. 
This paper provides an inside into the development of an exposure model of 
Strumica, North Macedonia, that describes the distribution of Strumica's main 
residential, industrial, and commercial building classes. The exposure database 
consisting of the existing building inventory is created using the international 
standard taxonomy for earthquake risk assessment, proposed by the Global 
Earthquake Model.  
This exposure model points out problems and concerns brought about by the 
implementation process and details the practical solutions and strategies used to 
achieve the set goals. 
The long-term expectation is that this exposure model will allow updating existing 
plans for emergencies, crises, and disasters, allowing city planners to include 
seismic risk assessment analyses that contain real data to encourage future risk 
reduction strategies. 
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1 Introduction 

Over half of the world’s population lives in high-risk areas 
exposed to at least one type of natural hazard: floods, 
cyclones, droughts, or earthquakes. Earthquakes are one of 
the most devastating and terrifying natural disasters that a 
human being can experience, and they can cause almost 
two-thirds of total annual world economic losses [1]. 

Seismic risk assessment can be defined as a process 
that determines the probability of losses by analyzing 
potential hazards and evaluating existing vulnerability 
conditions that could threaten or harm people, properties, 
and the environment on which they depend [2], [3].  

The assessment of seismic vulnerability as one of the 
primary components of risk depends on the characteristics 
of the buildings or group of buildings being analyzed and the 
available information about them, the appropriate 
assessment method (qualitative or quantitative), and the field 
data collected.  

Identifying relevant parameters of the exposed building 
stock is the first step in establishing a rational basis for 
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creating risk reduction strategies and providing a realistic 
estimation of seismic vulnerability [4]. 

Data on social and economic losses from past 
earthquakes show that the most frequent and greatest losses 
are those caused by damage and collapse of buildings [1]. 
Precisely because of this, the data on the existing building 
stock must be adequately evaluated and updated promptly. 
An assessment of damage and losses to existing building 
stock cannot be done without first creating an exposure 
model that contains all the necessary information about the 
buildings that are the subject of assessment. 

The exposure model is a key component of a seismic risk 
model, which captures the spatial distribution of population 
and built assets along with their structural characteristics and 
valuation that are required for seismic risk assessment [5].  

This study describes the development of a building 
exposure model for the City of Strumica [6] containing 
information on geographical distributions, structural 
characteristics, age, number of stories above ground, 
ductility of building structures, structural cost for each 
building, and building occupancy. Existing available data 
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which includes 4367 buildings, have been updated to create 
the most relevant building exposure database possible. 

2. Study area 

2.1 Seismicity 
 
The territory of the Republic of North Macedonia and the 

bordering countries (Albania, Bulgaria, Greece, Serbia-
South) are among the most seismically active regions of the 
Balkan Penisula. Historically, these territories have been 
affected by several moderate, strong, and major earthquakes 
associated with damaging intensities reaching IX to X 
degrees of MSK-64 seismic intensity scale [7]. According to 
the existing historical records, many destructive earthquakes 
struck the territory of Macedonia and its adjacent regions, 
before 1900.  

Strumica is a city in the Southeastern region of the 
Republic of North Macedonia [6], where tectonic activity is 
less pronounced [8]. It belongs to the Valandovo-Gevgelija 
Seismotectonic Zone out of 10 Active Seismotectonic Zones 
determined from consideration of the present-day SBER 
tectonic regime of the region and the subset of the 
Macedonian earthquake catalog [9]. Along the Strumica fault 
which is very traceable in the relief and limits the graben from 
the Belasica horst, occur rare and weak earthquakes [7]. The 
strongest earthquakes that affected the Strumica region took 
place in 1904 (Pehchevo-Kresna Mw.7.2) [10] and 1931 
(Valandovo-Dojran Mw.6.7) [11]. 

Relatively weak earthquake activity in the Strumica city 
area should not be a reason to underestimate seismic risks. 
Even if future studies for the city prove that seismic risk due 
to local seismicity can be neglected compared to some other 
risks for the existing building stock, recent studies have 
shown that the closeness of the Valandovo area as the 
seismically most active area in that region [7] can influence 
the behavior of the buildings in case of stronger earthquakes. 

 
2.2 Seismic exposure 

 
The uneven distribution of the population and rural-urban 

migration are important demographic characteristics not only 
in North Macedonia but in all European countries nowadays. 
According to the data available, following the Detailed urban 
plan of the city of Strumica, for which a general urban plan 
was also adopted, the city itself covers a total area of around 
529,41 ha. 

According to the Housing and Population Census of the 
Macedonian Statistical Office in 2021, the population of the 
city of Strumica is 49,995 thousand inhabitants, of which 
33,825 thousand are urban and 16,170 thousand rural, with 
a total number of 17,400 households located in the city [12]. 
The size of the city and its population make it one of the 
largest cities in the southeast of the country. 

The available census data are only partially useful 
because, apart from the housing and population data, they 
contain no data about the structural characteristics of the 
existing building stock in the city (material, load-resisting 
system, number of floors above ground).  

The assessment of exposure and damage to the building 
stock in the city of Strumica, in this paper is based on original 
data (geographical coordinates, gross and net floor area, and 
height of the buildings) taken from the Agency for Real 
Estate Cadastre of North Macedonia [13] and field 
observations made by the authors and local experts with 
relevant experience and knowledge in the field of research, 

to determine the structural system, year/period of 
construction of the buildings, and/or ductility of building 
structures. 

To obtain a more reliable exposure model of the city of 
Strumica, it must contain the main structural characteristics 
of the existing building stock, as the most important data. 
Only relevant data in the exposure model applied can create 
relevant risk assessment analysis contributing to reducing 
negative effects on buildings and people's health and life 
during and after an earthquake happened. 

3. Exposure model for the city of Strumica  

3.1  Development of an exposure model  
 

The exposure model intends to collect building-level data 
only for certain, valuable attributes that are related to specific 
typologies of buildings and allow risk calculations for each 
examined building [1]. For the exposure model for the city of 
Strumica, а working methodology is elaborated, which 
started the whole process of building exposure modeling by 
first providing an orthogonal photo of the city of Strumica 
taken by authorized Geodetic work companies located in 
Strumica. After obtaining the orthogonal photo of the city it 
was processed with the help of photogrammetric recording 
carried out by licensed and authorized geodetic engineers, 
during which a model of the terrain was obtained, where with 
the help of special parameters for our country, this model 
was brought to the exact position according to x and y 
coordinates and georeferenced rasters were obtained for the 
city of Strumica. The obtained georeferenced rasters for the 
city are adopted and applicable by the Real Estate Cadastre 
Agency of Macedonia [13] Fig.1 (right). These 
georeferenced rasters for the city of Strumica represent a 
base on which the existing buildings at the city level 
proceeded. 

All the information about the analyzed building stock, 
which consists of a total of 4367 objects (Fig. 1 right), was 
obtained through the process of vectorization and attribution 
of the real estate (buildings) performed in two software 
platforms (CAD and GIS): the graphic display of the objects 
is carried out in the AutoCAD software, while the attribute 
data for the objects (gross and net floor area, number of 
buildings, its dimensions and height) were processed in the 
QGIS software tool [14], based on data previously taken from 
The official web portal of the Real Estate Cadastre Agency 
of Macedonia [13] and from the authorized offices of the Real 
Estate Cadastre Agency of Macedonia located in Strumica. 

The structural characteristics of the existing building 
stock, including 4367 buildings, were collected in situ. The 
structural system of the buildings was determined through 
the evaluation of field inspectors based on their 
experience/knowledge while for determining the year/period 
of construction, interviews were conducted and 
questionnaires were distributed which were duly filled by the 
local citizens living/working in the buildings which were 
subject to analysis. After collecting the data, it was initially 
recorded on paper forms, and then transferred to Excel 
spreadsheets. To continue the procedure, the existing Excel 
file was converted into a so-called CSV (comma-separated 
values file) which contains attribute data and coordinates that 
are closely related to the geometry of the objects in question. 
It was this file that was imported into the QGIS software tool 
[14], a tool through which we graphically displayed the 
obtained results. 

 



Building exposure model for seismic risk assessment of the city of Strumica 

 

Building Materials and Structures 67 (2024)  2400009A   213 

 

Figure 1. Location layout (left) and existing building stock in the city of Strumica (right) graphically processed in OGIS 
software tool 

 
 

After the basic database for the city’s exposure model 
was formed, building classification using the GEM building 
taxonomy was done. The attribute data such as the building 
taxonomy was entered and completed by automation in the 
selected software. 
 
3.2 Classification of the existing building stock using gem 

building taxonomy 
 

Records of past earthquakes and numerous scientific 
studies show that some building features have a greater 
impact on a building's earthquake resistance than others. 
The building material (brick, reinforced concrete, steel, etc.) 
and the lateral load-resisting system of the building are very 
important features that largely define the behavior of 
buildings during and after an earthquake. 

Each material has a different behavior during and after 
an earthquake. For example, reinforced concrete buildings 
and steel frame buildings have shown very good behavior 
during past earthquakes, compared to unreinforced masonry 
constructions that have shown the worst behavior causing a 
huge number of losses (human and economic) during 
earthquakes that occurred in the past [15]. To assess the 
behavior of buildings in post-earthquake conditions, it is 
necessary to systematize the existing building stock and 
provide information on the number of residential, 
commercial, and industrial buildings and the number of its 
residents even in the smallest administrative unit of a state-
level, data contained in the city’s exposure model. 

In 2012, the Global Earthquake Model (GEM Building 
Taxonomy v2.0) adopted 13 attributes that create an 
exposure model that, alone or in synergy, can significantly 
affect the seismic behavior of the buildings [16].  In this 
paper, an exposure model of the city of Strumica, which 
contains a total of 4367 buildings located in the city, 
corresponding to the existing situation on the field, 
graphically presented in Fig. 1 (right) is created.  The existing 

building stock in the city is classified into different building 
classes according to the building taxonomy scheme 
developed by GEM (GEM building taxonomy scheme) [16] 
according to four (4) attributes: main constructional material, 
number of floors above the ground, year of construction 
(seismic code), or ductility of the building structure (Table 1). 
Two more attributes such as the structural cost of each 
building and building occupancy are taken into consideration 
while developing the exposure model.  

Taking into account the recommendations of the GEM 
Building typology [16],  the available data sources, and the 
construction specificities in the urban area, the attributes that 
have been adopted to describe the analyzed buildings 
classified according to GEM are elaborated (Fig. 2,3,4,5) by: 

a) information on the main constructional material used, 
b) number of floors above ground level 
c) year or period of construction of the building or 
d) ductility of building structures  
Information about the main construction material used 

was provided through a visual inspection on site involving 
field inspectors with previous experience/knowledge. 

Data on the number of floors above ground are provided 
online through the official web portal of the Real Estate 
Cadastre Agency of Macedonia [13]. 

The year/period of construction was determined through 
conducted interviews with local citizens and questionnaires 
that were properly filled out by them and referred to the 
buildings in which they live or work and are defined as the 
main subject of our analysis. 

The seismic code of the existing building stock in 
Strumica is determined considering the evolution of seismic 
design codes and construction practices in the Republic of 
North Macedonia (RNM), based on [17], where it is 
confirmed that three out of four categories of seismic design 
codes are present in our country: Absence of Seismic Design 
(CDN) for structures designed before 1948, Low Code Level 
(CDL) for structures designed between 1948 and 1964, and 



Building exposure model for seismic risk assessment of the city of Strumica 

214  Building Materials and Structures 67 (2024)  2400009A 

Moderate Code Level (CDM) for structures designed from 
1964 up to today.   

Regarding the ductility of the building structure, for this 
paper, the European and Global Exposure Model 
experiences from [18], are applied, where it is confirmed that 
the ductility of each building structure directly depends on the 
year of construction and the development of the valid seismic 
codes and standards of aseismic design in the 
country/region/town that we are investigating.  

In addition to the defined building taxonomy for the 
existing building stock in the city of (Tab. 1) and their number 
at a city level (Fig. 4) to more accurately assess the expected 
vulnerability of buildings from an earthquake, two other 
important attributes that should be included when completing 

the exposure data are the: structural cost of each building 
individually, which in this paper is obtained value using an 
Official template for determining the value of the building per 
m2 prescribed in the Methodology for determining the value 
of the apartment (Official Gazette of the Republic of 
Macedonia 13/10) [19] and the building occupancy, an 
attribute that contains the exact number of users/occupants 
in each building at different periods of the day, 
day/night/transit, obtained using available information 
officially published by the State Statistical Office based on 
the 2021 North Macedonia, census region 14 -  Strumica 
[20]. Building occupancy is a parameter that is usually used 
to estimate seismic risk in terms of the number of deaths or 
injuries after an earthquake happens. 

 
Table 1. Structural typologies for the building’s stock in the city of Strumica using the GEM Building Taxonomy scheme [16] 

Material Lateral load-resisting 
system 

Ductility Seismic Code Height 

MCF (Masonry) LWAL (Wall) DUL (Ductility Low)  H:1-H:3 

MUR-STDRE (Unreinforced 
masonry, dressed stone) 

LWAL (Wall) DNO (Non Ductile)  H:2-H:3 

MUR-ADO (Adobe 
Structures) 

LWAL (Wall) DNO (Non Ductile)  H:1 

CR (Concrete) LFINF (Infilled frame)  CDM (Moderate code) H:1-H:5 

CR (Concrete) LDUAL (Dual frame) DUM (Ductile, medium)  H:4-H:8 

CR (Concrete) LWAL (Wall) DUM (Ductile, medium)  H:5 

CR (Concrete) LFM (Moment frame) DUM (Ductile, medium)  H:1-H:5 

S (Steel) LFM (Moment frame) DUM (Ductile, medium)  H:1-H:2 

S (Steel) LFBR (Braced frame) DUM (Ductile, medium)  H:1 

 

 

Figure 2. Number of buildings at Strumica city according to: construction material 
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Figure 3. Number of buildings at Strumica city according to: the number of floors above the ground 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Number of buildings at Strumica city according to: ductility of building structures 
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Figure 5. Number of buildings at Strumica city according to aseismic design codes 
 
 

Although the detailed description of building attributes is 
of great importance when creating the most relevant 
exposure model, nowadays researchers tend to simplify 
building taxonomies when creating a city’s exposure model 
to completely exclude incomplete and/or unreliable 
information in connection with the existing building stock. 
The obtained results for the building stock at a city level 
(4367 buildings) presented in Fig. 2 show that in terms of 
construction material, masonry confined buildings 
(MCF_LWAL) are the most common group of buildings 
represented with a total number of 1807 buildings. The 
second most common group of buildings in the city such as: 
garages, utility areas, and sheds known as adobe and 
earthen structures (MUR-ADO) are represented with a total 
of 1115 buildings.  

Regarding the height of the buildings, the largest number 
of buildings at the city level:1575 buildings are two-floor 
masonry confined buildings (G+1) (Fig. 3). 

Regarding the ductility of the buildings, most of the 
analyzed building structures at the city level:1807 buildings 
are low ductility structures (built in the period 1948-1964) 
(Fig. 4).     

Regarding the period of construction of the buildings and 
the implementation of the codes for seismic design [17], [18] 
the largest number of buildings, or a total of 1807 buildings, 
were built in the period 1948-1964 (low code level) following 
the evolution of seismic design codes and construction 
practices in RNM, based on [17] (Fig. 5). 

After defining the dominant building classes of the 
analyzed buildings at a city level, according to the building 
taxonomy scheme developed by GEM [16] (tab.1), The 
authors visually inspected buildings in the field. In tab. 2 
photos/examples of typical buildings for the respective 
typology are shown. 

 
Table 2. Building classes in Strumica City (current state) 
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3.3 Data processing and visualization from the strumica 

database  
 
The ultimate goal of developing the exposure model for 

the city of Strumica is to make the collected data useful for 
planning and preventing earthquakes and other disasters 
simple, accessible for wider use, and timely updated.                  
As the focal points in exposure modeling involve adding new 
data, changing, and harmonizing available existing data and 
its visualization, a computer open-source system Quantum 
GIS, a geographic information system (GIS) [21] is chosen 
as a system that can collect, store, analyze, and display geo-
referenced data for the chosen city. The distribution of 
buildings in the city of Strumica, respecting the material, the 
load-resisting system of buildings, number of floors above 
ground are shown in Fig. 6 using QGIS. 

4 Conclusion 

The development and application of exposure models 
are of great importance to promptly predict and assess 
building damage and losses. In this paper, throughout the 
data collection stages, a large number of building attributes 
were observed and recorded, however, only simplified 
taxonomies that discard most of the important information 
about the existing building stock, are used. To examine the 
overall earthquake performance of buildings through 
еarthquake risk аssessment, this exposure model includes 

the following attributes: longitude and latitude and a building 
string that contains construction material, year/period of 
construction or ductility of building structures, and height of 
buildings above ground. 

A three-step methodology was applied to develop an 
exposure model for the city of Strumica. In the first step, all 
the necessary building attributes are identified, collected 
institutionally or on the field, and finally synthesized into an 
integrated whole. In the second step, according to the 
adopted methodology for the classification of building 
typology developed by GEM [16], the existing building 
taxonomies at the city level are defined. The final third step 
is visualizing the obtained results using the geographic 
information system (QGIS) program [21]. Using this program, 
verified and reliable data on the built construction stock are 
graphically displayed and easily readable by the general 
public. 

The purpose of this study is not to provide a detailed 
analysis of the existing building stock in the city because it is 
a long process that requires a series of additional research 
and numerous financial resources. This study represents an 
attempt to make an expert technical assessment of the 
building stock at a city level, which would greatly help 
decision-makers to take timely measures for the prevention 
and mitigation of the consequences of earthquakes as 
natural disasters. It should be promptly updated and further 
developed by the ones interested in risk assessment. 
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Figure 6. Strumica Database Buildings Using QGIS: a) construction material, b) number of floors above ground 
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captions should be placed directly below the figure or table. If the manuscript contains Supplementary material, it should also 
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There are no strict rules regarding the structure of the manuscript, but the basic elements that it should contain are: Title 
page with the title of the manuscript, information about the authors, abstract and keywords, Introduction, Materials / Methods, 
Results and Conclusions. 
 
The front page 
 
The front page contains the title of the manuscript which should be informative and concise; abbreviations and formulas should 
be avoided. 
 
Information about the authors are below the title; after the author's name, a superscript number is placed indicating his/her 
affiliation, which is printed below the author's name, and before the abstract. It is obligatory to mark the corresponding author 
with superscript *) and provide his/her e-mail address. The affiliation should contain the full name of the institution where 
the author performed the research and its address. 
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results and conclusions should be briefly stated as well. References and abbreviations should be avoided. 
 
Keywords 
 
Keywords (up to 10) should be listed immediately after the abstract; abbreviations should be used only if they are generally 
accepted and well-known in the field of research. 
 
Division into chapters 
 
The manuscript should be divided into chapters and sub-chapters, which are hierarchically numbered with Arabic numbers. 
The headings of chapters and sub-chapters should appear on their own separate lines. 
 
At the end of the manuscript, and before the references, it is obligatory to list the following statements: 
 
CRediT authorship contribution statement 
 
For transparency, we require corresponding authors to provide co-author contributions to the manuscript using the relevant 
CRediT  roles. The CRediT taxonomy includes 14 different roles describing each contributor’s specific contribution to 
the research output. The roles are: Conceptualization; Data curation; Formal analysis; Funding acquisition; Investigation; 
Methodology; Project administration; Resources; Software; Supervision; Validation; Visualization; Roles/Writing - original 
draft; and Writing - review & editing. Note that not all roles may apply to every manuscript, and authors may have contributed 
through multiple roles. 
 
Declaration of competing interest 
 
Corresponding authors, on behalf of all the authors of a submission, must disclose any financial and personal 
relationships with other people or organizations that could inappropriately influence their work. Examples of potential conflicts 
of interest include employment, consultancies, stock ownership, honoraria, paid expert testimony, patent 
applications/registrations, and grants or other funding. All authors, including those without competing interests to declare, 
should provide the relevant information to the corresponding author (which, where relevant, may specify they have nothing to 
declare). 
 
Declaration of generative AI in scientific writing 
 
This guidance only refers to the writing process, and not to the use of AI tools to analyze and draw insights from data as part 
of the research process. Where authors use generative artificial intelligence (AI) and AI- assisted technologies in the writing 
process, authors should only use these technologies to improve readability and language. Applying the technology should 
be done with human oversight and control, and authors should carefully review and edit the result, as AI can generate 
authoritative-sounding output that can be incorrect, incomplete or biased. AI and AI-assisted technologies should not be 
listed as an author or co-author, or be cited as an author. Authorship implies responsibilities and tasks that can only be 
attributed to and performed by humans. Authors should disclose in their manuscript the use of AI and AI- assisted 
technologies in the writing process by following the instructions below. A statement will appear in the published work. Please 
note that authors are ultimately responsible and accountable for the contents of the work. 
 
Disclosure instructions 
 
Authors must disclose the use of generative AI and AI-assisted technologies in the writing process by adding a statement 
at the end of their manuscript in the core manuscript file, before the References list. The statement should be placed in a 
new section entitled ‘Declaration of Generative AI and AI-assisted technologies in the writing process’. 
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Statement: During the preparation of this work the author(s) used [NAME TOOL / SERVICE] in order to [REASON]. After 
using this tool/service, the author(s) reviewed and edited the content as needed and take(s) full responsibility for the 
content of the publication. 
This declaration does not apply to the use of basic tools for checking grammar, spelling, references etc. If there is nothing to 
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The manuscript may have appendices. If there is more than one appendix, they are denoted by A, B, etc. Labels of figures, 
tables and formulas in appendices should contain the label of the appendix, for example Table A.1, Figure A.1, etc. 
 
ABBREVIATIONS 
 
All abbreviations should be defined where they first appear. Consistency of abbreviations used throughout the text should be 
ensured. 
 
MATH FORMULAE 
 
Formulae should be in the form of editable text (not in the format of figures) and marked with numbers, in the order in which 
they appear in the text. The formulae and equations should be written carefully takinginto account the indices and exponents. 
Symbols in formulae should be defined in the order they appear, right below the formulae. 
 
FIGURES 
 

- figures should be made so that they are as uniform in size as possible and of appropriate quality for reproduction; 

- the dimensions of the figures should correspond to the format of the journal: figures with a width approximately 
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width); 

- figures should be designed so that their size is not disproportionately large in relation to the content; 

- the text on the figures should be minimal and the font used should be the same on all figures (Arial, Times New Roman, 
Symbol); 

- figures should be placed next to the appropriate text in the manuscript and marked with numbers in the order in which they 
appear in the text; 

- each figure should have a caption that is placed below the figure - the caption should not be on the figure itself. 
In cases of inadequate quality of reproduction, the author should be required to submit figures as separate files. In this case, 
the figure should be saved in TIFF (or JPG) format with a minimum resolution of 500 dpi. 
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- tables should be in the form of editable text (not in the format of figures); 

- tables should be placed next to the appropriate text in the manuscript and marked with numbers in the order in which they 
appear in the text; 

- each table should have a caption that is placed below the table; 
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In text: References are given in the text by a number in square brackets in the order in which they appear in the text. Authors 
may also be referred to directly, but the reference number should always be given. 
 
In reference list: References marked with a number in square brackets are sorted by numbers in the list. 
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SUPPLEMENTARY MATERIAL 
 
Supplementary material such as databases, detailed calculations and the like can be published separately to reduce the 
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the reviewers know who the authors are. In the review process, the Editor-in-Chief first assesses whether the contents of the 
manuscript comply with the scope of the journal. If this is the case, the paper is sent to at least two independent experts in 
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Ringlock
Doka modularni sistem skela.
Bezbedno i efikasno rešenje za skele. Široka oblast primena.
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CENTAR ZA PUTEVE I GEOTEHNIKU 

Ispitivanje šipova 
 
 

 SLT metoda (Static load test)  
 DLT metoda (Dynamic load test) 
 PDA metoda (Pile driving analysis)
 PIT (SIT) metoda (Pile (Sonic) integrity 

testing) 
 CSL - Crosshole Sonic Logging 
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• Ispitivanje šipova 
o Geotehni ka istraživanja i ispitivanja – in situ  

 Laboratorija  za puteve i geotehniku 
• Projektovanje puteva i sanacija klizišta 

o Nadzor
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