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A r t i c l e h i s t o r y A B S T R A C T
Predicting the behavior of engineering structures with high accuracy remains a
challenging task as a result of their continuous interaction with the immediate
environment and varying operating conditions. In that context, forecasting tools are
primarily focused on the creation of a model of a so-called baseline system. This
established model serves as a foundation for identifying changes when new outputs
deviate from the predictions made by the model. Physics-based numerical models,
like the finite element method, often carry significant uncertainty stemming from
assumptions regarding structural characteristics, environmental influences, and
various loads affecting the system under study. Consequently, identifying the source
of any existing discrepancies between obtained model results and measured data
is difficult. This paper demonstrates a straightforward implementation of the
polynomial chaos expansion method for the formulation of prognostic data-driven
models targeted at tracking changes in continuously measured structural response.
The method’s effectiveness and positive features are showcased via practical
application onto two full-scale engineering structures: a concrete arch dam and an
industrial steel chimney. The models utilize environmental as well as response data
collected over two years and two months of monitoring of these structures,
respectively. The obtained results reveal the models' considerable potential as a
long-term monitoring tool for autonomous assessment of structural behavior.
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1 Introduction

As a four-dimensional concept, Structural Health
Monitoring (SHM) enables real-time as well as spatial
assessment of monitored systems [1-3]. It targets diagnosis
of the current condition of structures, however also, based
on recorded full data history, learning about load and
response mechanisms, prognosis of evolution of damages,
estimation of fatigue and residual life of structures [4]. SHM
frameworks are commonly based on approaches which
utilize either physics-based, data-driven or hybrid models [5].
In [6] the SHM paradigm is concisely described as
continuous system identification of a physical or parametric
model of the structure using time-dependent data.

The term “model” can be best summarized as a collection
of numerical or analytical processes employed to mimic the
behavior and response of a real-world system to various
changing factors [7]. However, all mathematical models
inherently include uncertainties [8]. These are related to: i)
modeling errors caused by oversimplified assumptions for
the modeled process, ii) numerical errors due to insufficient
resolution of applied numerical methods, and iii) data errors
linked to limited knowledge and availability of input data, the
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inherent variability of the system being studied [9]. Various
uncertainty quantification tools deal with systems affected by
stochastic variations in system parameters (data errors) by
taking into account the evolution of the probability distribution
of random inputs [10]. In contrast to traditional collocation
methods used for uncertainty quantification, spectral
methods are based on a fundamentally different concept.
Rather than conducting multiple simulations on an
established mathematical model, non-sampling approaches
aim to construct a functional relationship between a model’s
output quantity and a random input [11]. While these Fourier-
like series representations impose certain requirements on
both the output and input parameters, they offer a much
lower computational cost compared to the widely used Monte
Carlo method and other sampling techniques, which
encompass a more "local" nature and asymptotic
convergence rates [11-12].

This paper is focused on one representative of the
spectral methods class, the Polynomial Chaos Expansion
(PCE). The PCE method enables the generation of data-
driven models as an approximation of input–output
relationship by casting the model response onto orthogonal
polynomials, with relatively simple mathematical formulation

https://doi.org/10.5937/GRMK2400013G
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and efficiently spent computer time [13]. Additionally, the
PCE method provides a suitable mathematical formulation
for analyzing the sensitivity of the measured response of the
structure to a large number of input variables describing the
influence of the environment and operating conditions [14-
15]. In this context, the possibility for assessing response
statistics via direct and mathematically simple post-
processing of the expansion coefficients makes the PCE
model a desirable tool for real-life applications [16].

PCE is a commonly employed method in uncertainty
quantification, where it is often used to substitute a
computationally intensive model, which is affected by
random inputs, with a more cost-efficient polynomial
function. In recent years it has been successfully applied to
a number of civil engineering problems dealing with
construction of metamodels [17-23]. In [17] PC expansion is
used to represent the stochastic system output responses of
three numerical modeled systems of civil bridge structures.
The results obtained are compared with those from the
widely used MCS and FOSM methods. The obtained PC
coefficients are directly used for calculating the global
sensitivity indices, which verifies the accuracy and
significantly reduced computational demand of the
presented method compared to the MCS-based calculation.
In [18] the application of PCE for meta-modeling of dam
engineering problems is explored. The response prognosis
of four numerical case studies with different complexities is
investigated with uncertainties propagated in material
properties and modeling. The method is found as an effective
technique to deal with uncertainty quantification in concrete
dams. Ghanem et al. [19] focused on an embankment dam
using stochastic finite element analysis involving the PCE
method, where material’s elastic and shear moduli are
modelled as stochastic processes. The work in [20] presents
a metamodeling approach designed to handle uncertainties
in simulating nonlinear, dynamically evolving engineering
systems. The authors utilized nonlinear autoregressive with
exogenous input (NARX) models, where random parameters
are used to represent uncertainty propagation within the
numerical model. The random NARX parameters are
expanded into a polynomial chaos. The resulting PC-NARX
metamodel significantly reduces computational time while
maintaining adequate accuracy. Guo et al. [21] also
investigated the stability of an embankment dam using
sparse PCE, assuming three soil properties—dry density,
cohesion, and friction angle—as random variables. They
applied both the finite difference and limit equilibrium
methods to assess the dam's safety factor, presenting failure
probability distributions for normal operating conditions and
seismic loading. DeFalco et al. [22] introduced a method for
calibrating model parameters in a Bayesian framework. This
approach replaces the original model with a proxy model
obtained through generalized PCE, reducing computational
load while providing a global model error estimate. The
method is tested on a case study of one Italian concrete
gravity dam, where recorded displacements have been used
to estimate model parameters values which provide a model
response with minimal error. Exploring the problems of finite
element model updating and structural damage identification
for a small-scaled laboratory dam, the research in [23]
proposed a sparse PCE method for substituting the
computationally expensive FE model, enabling a low-cost
and high predictive accuracy.

The application of the PCE tool for the purpose of purely
data-driven diagnostics and prognosis of monitored
structures was explored in [14,24]. Spiridonakos and Chatzi
[24] introduced the PCE method together with the

independent component analysis (ICA) tool in a long-term
scale, delivering a robust performance indicator. The PCE
-ICA scheme was successfully verified on damage detection
for the benchmark SHM project of the Z24 bridge. Related to
tower-like structures, in [14] the authors combined the PCE
method with the parametric smoothness priors time varying
autoregressive moving average (SP-TARMA) method. The
proposed PCE-SPTARMA approach delivers a holistic
model for long-term tracking of the structural behavior of two
full-scale operational wind turbine structures, demonstrating
the high potential of the proposed method for automated
condition assessment of large real-world structures,
operating in a wide range of conditions.

In recent years, significant advancements in the
automation of structural monitoring systems have facilitated
the collection of vast amounts of data. This has, in turn,
accelerated the adoption of data-driven techniques for
structural safety monitoring [25-28]. Given the limited
availability of accessible monitoring data from full-scale
operational engineering structures for research purposes,
this study makes a key contribution by offering valuable
insights into the practical implementation of a selected
prognostic tool, applied to data gathered from real-world
engineering structures. While previously reported studies
focus on meta-modelling or multi-componential utilization of
the PCE tool, herein we are testing a rather straightforward
application of the PCE method, exploring direct employment
of uncorrelated input set of measured environmental data
and not extensively preprocessed measured response
quantity, serving directly as a model output variable. The
examination of the limitations and advantages of this basic
methodology enhances the understanding of its limitations
for practical implementation.

To this end, the applicability of the PCE method is herein
tested on two distinct full-scale structures: a concrete arch
dam and a steel chimney. The constructed models for both
structures extrapolate on a selected single measured
response variable (displacement for the dam structure and
acceleration for the chimney structure), representing the
model’s output parameter, by incorporating the variability of
measured environmental conditions (water level and
ambient temperature for the dam structure and wind velocity,
direction and ambient temperature for the chimney
structure), serving as model inputs. The analysis of the first
example of the arch dam demonstrates the effect of
incomplete training set on the accuracy of the model
prediction, while the second case study underlines the
aspect of data condensation via the effective sensitivity
analysis via the PCE-based obtained Sobol indices. The
obtained results showcase the potential of the method for its
efficient utilization in prognostic and diagnostic tasks within
holistic and autonomous SHM frameworks.

2 Polynomial chaos expansion- theoretical
background

The field of uncertainty quantification deals with systems
affected by stochastic variations in system parameters, i.e.
data errors which rise from limited knowledge and availability
of input data, or operating (inherent) variability of the studied
system. To this end, uncertainty quantification models take
into account the evolution of the probability distribution of the
random input. The term of "Homogeneous Chaos" was
initially introduced by Wiener [29] for the purpose of modeling
stochastic processes involving Gaussian random variables
through the use of Hermite polynomials. To extend this
approach to different types of random variables, Xiu et al.
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proposed the "generalized polynomial chaos" framework
[30], which adapts the method to both discrete and
continuous random variables by employing orthogonal
polynomials from the so-called Askey scheme [31]. In recent
decades, polynomial chaos expansion has found increasing
popularization in various research fields, with key
developments shown in Fig. 2.1.

More specifically, if we assume the system 𝑌 = 𝑆(X) is
comprised of M random input parameters represented by
independent random variables, e.g. measured water level,
wind velocities and temperature values, gathered in the
random vector X of prescribed joint Probability Density
Function (PDF), and the output variable is of finite variance,
the PCE model assumes the form [14]:

𝑌 = 𝑆(𝑋) = ∑ 𝑦𝛼 𝜓𝛼 (𝑋)
𝛼∈𝑁𝑀

(1)

where 𝜓𝛼 (𝑋) are polynomials dependent on multiple
variables, orthonormal with respect to the probability density
function 𝑓𝑋 , 𝛼 ∈ 𝑁𝑀 is a vector of multi-indices of the
multivariate polynomial basis identifying the components of
the polynomials 𝜓𝛼 and 𝑦𝛼 ∈ 𝑅 are the corresponding
unknown deterministic coefficients of projection.

In practical applications, the sum in expression (1) is
truncated to a finite sum, which is typically achieved by
limiting the total maximum degree 𝑝 of the polynomials in the
polynomial basis to:

|𝛼𝑖| = ∑ 𝛼𝑖 ,𝑚

𝑀

𝑚=1

≤ 𝑝 ∀ 𝑖 (2)

This constraint ensures that the total number of terms in
the polynomial basis will be:

P =
(𝑀 + 𝑝)!

𝑀! 𝑝!
(3)

where M designates the number of random variables and p
denotes maximum basis degree.

Polynomials dependent on multiple variables 𝜓𝛼 (𝑋) are
obtained through the tensor product of corresponding one-
dimensional orthonormal polynomials, selected based on the
probability density function of the random input variables and
the known Askey scheme for orthonormal polynomials [31].
Finally, the truncated PCE model to the first P terms yields a
finite parameter vector 𝑦𝛼 which may be estimated by
solving Eq. (1) in a least squares sense. The least squares
approach is based on minimization of the cost function R,
estimated as sum of the squared residuals between true
(observed) and modeled (predicted) system outputs.

An approach for global sensitivity analysis of PC output
variables, based on computationally inexpensive post-
processing of estimated PC coefficients, was proposed in the
work of Sudret [16]. Exploiting the orthonormality of the PC
basis and their subsequent convenient properties, the
approach utilizes a variance-based sensitivity analysis tool,
namely the Sobol’ decomposition. Its final goal is estimation
of Sobol’ sensitivity indices, which represent the fraction of
the total variance of the model output that can be attributed
to each input variable or combinations of variables [16].

Sobol’ indices are obtained as a sum of squares of the
PC coefficients and represent the fraction of the total
variance 𝐷 of the model output that can be attributed to each
input variable or combinations of variables. More precisely,
the index for a single input variable 𝑋𝑖 is called the first-order
Sobol index and represents the effect of 𝑋𝑖 alone, Eq. 4.
Indices for the influence of multiple variables, such as
𝑆𝑖𝑗 , 𝑖 ≠ 𝑗, are known as higher-order Sobol indices and
represent interaction effects between 𝑋𝑖 and 𝑋𝑗 that cannot
be attributed to the individual contributions of each variable
separately.

𝑆𝑖 = ∑ 𝑦𝛼
2 ⁄𝐷 , 

V∈𝐴𝑖

𝐴𝑖 = {V ∈ 𝐴: V𝑖 > 0, V𝑗 ≠𝑖 = 0}

(4)

3 Case study I: Concrete arch dam

The first presented case study herein is a concrete arch
dam, located southwest (30 km aerial distance) of Skopje,
RN Macedonia. The structure represents a thin concrete
shell with double curvature, with a structural height of 64
meters. The dam is unreinforced, except for the upper third,
which potentially would handle intensified oscillations in the
event of an earthquake. The crest level is located at 364
meters above sea level (asl), while the lowest point at the
bottom is at 300 m asl. The thickness of the crest is 2.0 m,
gradually increasing to 10 m at the bottom. The structure was
built over the period of six years (2006-2012), utilizing 27362
m3 concrete for the dam body. The hydroelectric plant began
operating on August 1, 2012, with an output capacity of 36.4
megawatts.

Since its construction the structure is equipped with a
comprehensive monitoring system measuring: reservoir
water level, underground water levels, ambient temperature
and temperatures of concrete and water, rainfall,
displacements at the crest and dam body, strains, rotations,
accelerations during triggered earthquake events, contact
stresses, etc. All aforementioned parameters are mainly

Figure 2.1. Developmental milestones for the PCE method (adopted from [4])
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recorded once in six hours. The sensor distribution is based
on results obtained from static and seismic analyses of a FE
mathematical model, taking into account variations in the
characteristics of the rock mass. This resulted in a nearly
symmetrical layout of the instruments. The instruments are
placed at five levels: +305.00; +320.00; +335.00, and
+357.00 meters above sea level. These levels mainly
correspond to points determined by the computational model
at locations where the calculated values are of particular
importance for the behavior of the dam.  A more detailed
overview of the complete acquisition system can be found in
[32].

3.1 PCE application

Within this section the formulation and application of the
PCE model is tested on data obtained from a two-year long

monitoring period (years 2013 and 2014) for the dam
structure, for a selected number of sensors, Fig.3.1.

The sampling frequency of the selected measured
variables is once per six hours, which for the analyzed period
of two years (excluding spurious data or missing records)
provided in total of 2268 data sets, distributed as in Fig. 3.2.
In order to select the appropriate physical quantities
representing the influence of the environment on the
structure (model input matrix), a correlation matrix has been
computed as a first step. The selection of uncorrelated (or
weakly correlated) input variables is a theoretical
prerequisite of the PCE model [4]. Whereas various
mathematical approaches do exist in transforming correlated
data into uncorrelated variables [33], an advantage of the
direct employment of uncorrelated (weakly correlated) input
parameters is the possibility of straightforward calculation of
the PCE-based Sobol’ indices, demonstrated in Section 4.

Figure 3.1. The concrete arch dam and a schematic overview of employed sensors from the installed monitoring system

Figure 3.2. Available data sets over the two-year long period
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In Fig. 3.3 the correlation plots for each pair of available
input variables are presented. Due to the high correlation
among the three measured temperatures, Pearson
Correlation Coefficient (PCC) is 0.968 and 0.683, a single
temperature-related variable, namely the ambient
temperature (as most correlated to the measured
displacement) was selected as an input quantity. In addition,
the ambient temperature is correlated to the measured
reservoir water level with the lowest PCC equal to 0.078.
This enables the utilization of both quantities as PCE inputs.

On the other hand, the recorded crest displacement in X
direction is selected as representing structural behavior, or
as the PCE output parameter. The input/output variables are

recorded at a frequency of one measurement every 6 hours,
time history plots presented in Fig. 3.4.

An additional important criterion, particularly in the case
of handling of a large database, is computational efficiency.
In this context, the selection of the PC order, which affects
the modeling precision, can also directly influence the total
number of unknown PC coefficients and as a result
computational time. For the assessed case study, the
number of unknown PC coefficients in correlation to selected
maximal PC order and the Leave One Out (LOO) error for
the training and validation set of the actual case study is
demonstrated in Fig. 3.5.

Figure 3.3. Correlation plots for the PCE input variables 

Figure 3.4. Time history plots for the selected PCE input and output quantities
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Figure 3.5. (Left) Number of unknown PC coefficients in correlation to selected maximal PC order; (Right) LOO error in
correlation to PC model order for the dam case study

As a last step, the model output variable and the PDFs of
the measured operational input data are fed into the PCE
framework. In accordance with the PDFs of the input data,
the Hermite polynomials are selected as the PC functional
basis and the maximal polynomial order is selected as p=2.

In Fig. 3.6, the performance of the model with the
selected output variable is demonstrated. The graphs
demonstrate good alignment between the computed
displacement (using the PCE model) and the actual
measured displacement. The vertical dashed line marks the
time interval used for training the PCE model (applied 70%
of data). In the portion of the time interval (right of the vertical
line) corresponding to the validation period, after training is
completed, the model generates the displacement of the
structure using “new” input data. From the results presented,
it is evident that the model exhibits good capability in
predicting the displacement of the structure in the considered
direction.

The water level in the reservoir of the analyzed dam is
maintained almost constant over time because, among other
things, the dam is used for electricity production. To
demonstrate the workings of the model to unknown data two

additional analyses were performed by training the PCE
model on an altered timeline, producing two different training
scenarios.

In the first case (Scenario A), the training set includes
data from the trial filling and emptying of the reservoir, while
in the second case (Scenario B) this data is excluded. On the
other hand, both scenarios include this data in the validation
set. Both cases are graphically presented in Fig. 3.7, and the
results of the analysis are shown in Figs. 3.8 – 3.9.

When the filling/emptying of the reservoir is not included
in the training period of the model (Scenario B), the PCE
validation set values drastically deviate from the monitored
data. Having this in mind, in a potential autonomous SHM
framework development such a deviation from "normal"
expected ranges (usually ±3𝑠𝑡𝑑) would trigger an alarm,
which in this case would be a false positive (since it stems
from changes in environmental conditions, not actual
structural changes). This highlights the importance of using
a holistic dataset during the model’s training phase, which
captures the complete operational spectrum of the structure.

Figure 3.6. The output variable and the capability of the PCE model to predict it
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Figure 3.7. Input variables included for training for Scenario A and Scenario B

Figure 3.8. PCE model estimates for Scenario A

Figure 3.9. PCE model estimates for Scenario B



Application of the polynomial chaos expansion method for forecasting structural response of two full-scale case studies

Building Materials and Structures 68 (2025)

4 Case study II : Industrial steel chimney

The second testing case study is an industrial out of use
steel chimney located at the Ohis factory in Skopje, RN
Macedonia. A SHM campaign was undertaken in the period
14/12/2013 to 14/02/2014. An installed monitoring system for
the complete timeframe of two months continuously
measured: structural vibration responses (accelerations),
environmental parameters (wind velocity and ambient
temperature), as well as ground vibrations nearby the
structure (Fig. 4.1).

Acceleration time histories were recorded by five tri-axial
accelerometers for ambient vibration placed along the
structure’s height, with the sampling frequency of 200 Hz.
Details on the placement and positioning of the sensors, as
well as structural identification results are presented in a
previous work in [34]. The authors successfully applied
operational modal analysis for two identified loading
scenarios: i) recurring train induced vibrations from a nearby
railway, and ii) wind induced vibrations for a time frame
corresponding to the maximal value of recorded wind velocity

within the two months period of monitoring. The identified
natural frequencies of the structure were verified with a FEM
of the structure.

4.1 PCE application

In this case study, due to detected spurious trends in
collected data, a three-week time frame was selected as a
testbed for simplified showcasing the PC-based sensitivity
analysis potential. The collected data was averaged to a
sampling frequency of one record per minute, or for the
analyzed period of 22 days in total 30407 data sets were
used. The PCE output variable utilized to describe the
behavior of the structure is the one-minute standard
deviation of the measured acceleration at the top of the
chimney in horizontal direction. The measured ambient
temperature, wind velocity and direction were employed as
PCE input variables, describing the environmental effects.
The time histories and correlation plot of the selected
variables are plotted in Fig. 4.2 and Fig.4.3.

Height: 40 m
Diameter: 1.9 m
Thickness: 6-10 mm
Material: Steel S235
Construction year: 1970

Figure 4.1. Installed monitoring system and information for the structure under study

Figure 4.2. Time history plots for the selected PCE input and output quantities
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Figure 4.3. Correlation plots for the PCE input variables

In order to analyze how the variability of each individual
input variable affects the chimney measured vibration, Sobol
indices were calculated. The indices of first, second, and
third order, along with total indices, were computed using
coefficients obtained from a developed PCE data model
(selected maximum PC order 4; adopted PC basis in
accordance with the individual pdf of the three input
variables), Fig. 4.4.

The analysis of the Sobol indices demonstrates that the
variability of temperature has the least influence on the
selected output representing the behavior of the structure
(standard deviation of the measured acceleration) compared
to the other two input variables. Therefore, a model with a
reduced number of input variables is constructed, specifically
with the input variables (1) wind direction angle and (2) wind
velocity, Fig. 4.5. The results demonstrate that the difference

between the models’ LOO errors is negligibly small,
specifically 6%, indicating that Model 2 (the model with a
reduced number of input variables) has a slightly lower
average error. This confirms the advantage of the Sobol
indices analysis, as they potentially can reduce the
dimensionality of the problem and enable a balance between
computational efficiency and modeling precision.

In addition to Fig. 4.5., a look at the comparison of the
PCE estimated values for the validation set for the both
models in Fig. 4.6 (b) shows that model 2 in general
produced higher values of the amplitudes of the modeled
output parameter in comparison with model 1, which serves
well for the estimated higher peaks of the std of the
acceleration. Both models, however, perform similar for the
training sets Fig. 4.6 (a).

Figure 4.4. Calculated PCE-based Sobol indices
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Figure 4.5. (Top) PCE model estimates for three input variables;
(Bottom) PCE model estimates for two input variables;

(a) (b)

Figure 4.6. (a) PCE model 1 estimates versus PCE model 2 estimates - training data;
(b) PCE model 1 estimates versus PCE model 2 estimates - validation data;

5 Conclusions

The research study presented herein focused on the
construction and implementation of two separate data
models using the polynomial chaos expansion method. Both
models were successfully applied on two different full-scale
case studies, namely a concrete arch dam and an industrial
steel chimney, demonstrating the significant potential of the
method to be used as a tool for long-term monitoring of
engineering structures. In effort to present the workings of
the method a rather straightforward utilization of the models

was tested, i.e. featuring uncorrelated input sets and crude
application of measured output parameters.

The obtained results demonstrated that the method
represents an efficient tool for constructing data-driven
models, characterized with simplicity of construction and little
parameter tuning required. Specifically, after selecting the
appropriate type and maximum degree of the polynomials in
the basis, the coefficients are obtained through simple matrix
algebra. Additionally, the obtained results with PC-based
estimated Sobol’s indices have accentuated the
convenience of the tool for sensitivity analysis and as a result
reducing the dimensionality of the studied problems.
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Future research efforts are extended towards
incorporating mutually dependent input variables aided by
additional mathematical tools which will ensure preservation
of the physical meaning of the transformed variables, as well
as practicing the PCE tool with an accompanying diagnostic
SHM tool which will allow for improved tracking of changes
in structural responses.
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